RESEARCH ARTICLE

Cortical Brain Activity is Influenced by Cadence in Cyclists

The Open Sports Sciences Journal 19 Apr 2013 RESEARCH ARTICLE DOI: 10.2174/1875399X01306010009

Abstract

The importance of the central nervous system in endurance exercise has not yet been exhaustively investigated because of difficulties in measuring cortical parameters in sport science. During exercise there are a lot of artifacts and perturbations which can affect signal quality of cortical brain activity. The technical developments of surface electroencephalography (EEG) minimize such influences during standardized test conditions on a bicycle ergometer. The aim of this study was to investigate how movement frequency affects cortical brain activity and established physiological parameters during exercise. In cycling peak performance is affected by cadence. The analysis of brain cortical activity might lead to new insights in the relation of power and cadence. In a laboratory study sixteen male, endurance-trained cyclists completed a 60 min endurance exercise on a high-performance bicycle ergometer. Cadence was changed every 10 min (90-120-60-120-60-90 rpm). EEG was used to analyze changes in cortical brain activity. Furthermore, heart rate, blood lactate and rate of perceived exertion (RPE) were measured after each cadence change. The results indicate that heart rate, blood lactate and RPE were higher at 120 rpm compared to 60 rpm. The spectral EEG power increased statistically significantly in the alpha-2 and beta-2 frequency range by changing cadence from 60 to 120 rpm. By lowering the cadence from 120 to 60 rpm the spectral power dropped statistically significantly in all analyzed EEG frequency bands. The data also showed a statistically significant decrease of spectral EEG power in all frequency ranges over time. In conclusion, the analyzed EEG data indicate that cadence should be considered as an independent exercise normative in the training process, because it directly influences metabolic, cardiac and cortical parameters.

Keywords: Brain waves, central nervous system, constant workload, eeg, movement frequency, pedaling frequency.
Fulltext HTML PDF
1800
1801
1802
1803
1804