All published articles of this journal are available on ScienceDirect.
Golf Club Deflection Characteristics as a Function of the Swing Hub Path
Abstract
This study investigated the relationships between golfer hub path trajectories and interaction kinetics, and club behavior. An equation of motion describing a flexible golf club system was derived and solved to yield time and club position deflection behavior during the downswing. This equation was applied to three diverse subjects whose kinematic and kinetic information was used to drive the simulation. It was determined that there is a relationship between the timing of the maximum interaction torque and the increase in normal force applied to the club and club head deflections. Also, it appears that there is a correlation between degree of radius reduction directly before impact and shaft deflection behavior. The timing of both torque and normal force are directly related to changes in hub path radius thus the effect of hub path geometry on club deflection behavior is secondary. Based upon these findings, a method for fitting shafts to specific swing characteristics was developed that optimized predicted carry distance. These results are based upon limited subjects.