RESEARCH ARTICLE


Kinematic, Coordinative and Efficiency Parameters of Physically Impaired Swimmers at Maximum Aerobic Power Speed



Wellington G. Feitosa1, Ricardo de A. Correia2, Tiago M. Barbosa3, Flávio Antônio de Souza Castro2, *
1 Faculty of Physical Education, Universidade Estadual do Ceará, Brazil
2 Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Brazil
3 Physical Education and Sport Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore; And Department of Sport Sciences, School of Education, Polytechnic Institute of Bragança, Bragança, Portugal; eResearch Centre in Sports, Health and Human Development, Vila Real, Portugal


Article Metrics

CrossRef Citations:
8
Total Statistics:

Full-Text HTML Views: 1895
Abstract HTML Views: 734
PDF Downloads: 480
ePub Downloads: 352
Total Views/Downloads: 3461
Unique Statistics:

Full-Text HTML Views: 808
Abstract HTML Views: 386
PDF Downloads: 336
ePub Downloads: 239
Total Views/Downloads: 1769



Creative Commons License
© 2019 Feitosa et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Rua Felizardo, 750 Jardim Botanico, Brazil; Tel: +00555133085825;
E-mail: souza.castro@ufrgs.br


Abstract

Background:

In paralympic swimming, the biomechanical parameters related to performance are effectively determined according to the potentialities and peculiarities of each athlete. However, a clear integrated approach to these parameters for swimmers with physical disabilities at the speed of maximum oxygen uptake (vV̇O2max) is still practically non-existent.

Objective:

The purpose of this study was twofold: (i) to assess kinematic, coordinative and efficiency parameters measured at vV̇O2max in swimmers with physical impairments; and (ii) to correlate these biomechanical parameters with the time for a 200 m maximum test.

Methods:

Eleven swimmers with physical disabilities (seven males and four females) were assessed at vV̇O2max with support from a three-dimensional kinematic method. The performance parameters analysed were: (i) kinematic - stroke rate (SR), stroke length (SL), average swimming speed (SS) and intra-cyclic velocity variation (IVV); (ii) coordinative - index of coordination (IdC) and adapted index of coordination (IdCadapt); and (iii) swimming efficiency - propelling efficiency (çp).

Results:

The overall results showed high dispersion and wide confidence intervals for the kinematic and coordinative variables. The mean and standard deviation of vV̇O2max and V̇O2 at the same intensity were 0.90 ± 0.13 m/s and 38.2 ± 8.3 ml/kg/min, respectively.

Conclusion:

Swimmers with less significant impact of physical disability on specific swimming tasks presented higher SL, SS and çp. The IVV was higher in swimmers with a greater impact of disability on conducting specific competitive swimming tasks. In general, the catch-up inter-arm coordination model is adopted.

Keywords: Adapted swimming, Disability, Paralympics, Oxygen uptake, Biomechanics, Coordination.