RESEARCH ARTICLE


Effects of Low-Frequency Vibration on Physiological Recovery from Exhaustive Exercise



Ching-Feng Cheng1, 2, Yen-Ling Lu1, 2, Yi-Chen Huang1, 2, Wei-Chieh Hsu2, 3, Yu-Chi Kuo4, Chia-Lun Lee5, *
1 Department of Athletic Performance, National Taiwan Normal University, Taipei, Taiwan;
2 Sports Performance Laboratory, National Taiwan Normal University, Taipei, Taiwan;
3 Graduate Institute of Sports Training, University of Taipei, Taipei, Taiwan;
4 Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan;
5 Center for General Education, National Sun Yat-sen University, Kaohsiung, Taiwan


Article Metrics

CrossRef Citations:
2
Total Statistics:

Full-Text HTML Views: 3652
Abstract HTML Views: 1040
PDF Downloads: 539
ePub Downloads: 521
Total Views/Downloads: 5752
Unique Statistics:

Full-Text HTML Views: 1851
Abstract HTML Views: 502
PDF Downloads: 369
ePub Downloads: 336
Total Views/Downloads: 3058



Creative Commons License
© 2017 Cheng et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Professor, Center for General Education, National Sun Yat-sen University, Kaohsiung, Taiwan, No. 70, Lienhai Rd., Kaohsiung, 80424 Taiwan, Tel: +886-7-5252000, Fax: +886-7-7191435; E-mail: karenlee1129@gmail.com


Abstract

Objective:

This study examined the effects of low-frequency vibration on physiological recovery from exhaustive exercise.

Methods:

Twelve college males were recruited in this randomized crossover-designed study, and were asked to perform one of three treatments following a graded cycling exercise test: nonvibration (0 Hz, 0 mm, CON), high-amplitude vibration (8 Hz, 8 mm, HVT), or low-amplitude vibration (8 Hz, 2 mm, LVT). After the 10-min treatment, participants were asked to rest in a supine position for a 1-h recovery. The oxygen uptake, heart rate (HR), and blood lactate concentration (La) were measured during the trials.

Results:

The oxygen uptake during HVT were significantly higher than those in the CON and LVT (p < 0.05, effect size = 1.52−1.63). The La immediately following HVT was significantly lower than that following CON (HVT vs. CON = 11.52 ± 1.85 vs. 12.95 ± 1.78 mmol•L-1, p < 0.05, effect size = 1.94). Additionally, the Las following HVT and LVT at the post 30-min were significantly lower than that following the CON (HVT vs. LVT vs. CON = 4.72 ± 0.97 vs. 4.58 ± 1.06 vs. 5.98 ± 1.49 mmol•L-1, p < 0.05). No significant differences were found on the HRs, or on the time and frequency domain indices of HR variability among treatments during the recovery period.

Conclusion:

These results indicated that vibration with low frequency (8 Hz) can facilitate the removal of metabolic by-products after exhaustive exercise, but it has little effect on the autonomic nervous modulation of HR recovery.

Keywords: Heart rate variability, Lactate clearance, Mechanical massage, Oxygen uptake, Regeneration, Metabolism.