RESEARCH ARTICLE


Effects of Successive Annual Training on Aerobic Endurance Indices in Young Swimmers



Gavriil G. Arsoniadis, Petros G. Botonis, Ioannis S. Nikitakis, Dimitrios Kalokiris, Argyris G. Toubekis*
School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Division of Aquatic Sports, Dafne 17237, Athens, Greece


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 2610
Abstract HTML Views: 1121
PDF Downloads: 983
ePub Downloads: 788
Total Views/Downloads: 5502
Unique Statistics:

Full-Text HTML Views: 1184
Abstract HTML Views: 722
PDF Downloads: 430
ePub Downloads: 243
Total Views/Downloads: 2579



© 2017 Arsoniadis et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the National and Kapodistrian University of Athens, School of Physical Education and Sport Science, Division of Aquatic Sports, Ethnikis Antistasis 41, Dafne, 17237, Athens, Greece, Tel: +030 2107276049, Fax: +030 2107276139; Email: atoubekis@phed.uoa.gr


Abstract

Background:

The magnitude of long-term changes on aerobic endurance indices provides useful information for understanding any training-induced adaptation during maturation.

Objective:

The aim of the present study was to compare changes in different aerobic endurance indices within two successive training years.

Methods:

Eight swimmers, (five male, three female; age: 14.1±1.5, height: 163.8±9.9 cm, body mass: 55.8±10 kg) were tested at four time-points, before and after the 12-week specific preparation period, within two successive training years (at year-1: start-1, end-1, at year-2: start-2, end-2). In each time-point were timed in distances of 50, 200 and 400 m front crawl to calculate the critical speed (CS). Subsequently, performed 5x200 m front crawl progressively increasing intensity and the lactate concentration was determined after each repetition. Using the individual speed vs. lactate concentration curve, the speed corresponding to 4 mmol.L-1 concentration (V4) and the speed corresponding to lactate threshold (sLT) were calculated.

Results:

Aerobic endurance was increased from year-1 to year-2 (effect of time, p<0.05) and no difference was observed between V4, sLT and CS at all time-points of evaluation (p>0.05). In year-1, V4, sLT and CS were unchanged even after the 12-week period (p>0.05). During year-2 of training it was only V4 that was increased from start-2 to end-2 (p<0.05), whereas sLT and CS were unchanged at the same period (p>0.05).

Conclusion:

The aerobic endurance indices change similarly throughout a two-year training, independent of the maturation. Possibly, V4 is more sensitive to detect training adaptations during the specific preparation period in young swimmers.

Keywords: Long-term training, Lactate threshold, Critical velocity, Blood lactate, Biological maturation, Training adaptations.