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Abstract: During the last two decades investigations into motor learning have gone beyond the traditional discrete sum-
mary statistics and more and more complex process oriented movement variables are being investigated. This increase in 
the complexity of data entails also an increase in the complexity of the data analysis. The present paper serves as an intro-
duction for sports scientists to several different analysis methods, which have produced many interesting insights in the 
area of motor control and motor learning over the last few years, thereby highlighting non-linear aspects of motor learn-
ing. An approachable introduction to root-mean square measures, uncontrolled manifold analysis, principal component 
analysis, and cluster analysis is given. These analysis tools enable sports scientists to investigate motor learning from a 
non-linear perspective and to gain a better knowledge of the processes occurring during motor learning. 
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INTRODUCTION 

 For quite some time the focus of studies in motor learn-
ing was set on changes in performance variables. Accord-
ingly, a large body of literature describing how specific per-
formance variables change over time during learning is 
available [1-3]. For example, reaction time being one of the 
most prominent performance variables has been studied 
using all possible permutations of tasks and conditions and 
many interesting insights have been gained by this line of 
research [3, 4]. The types of variables used in these studies 
can be characterized as discrete summary statistics as they 
collapse a complex phenomenon like an action onto a single 
number and this approach has been used extensively in the 
area of movement studies as well. For example a javelin 
throw is represented through the throwing distance [5]. One 
problem with these discrete summary statistics being obvi-
ously that much information is lost during the analysis [6]. In 
Fig. (1) two curves with equal mean and standard deviation 
but obviously representing quite different waveforms are 
depicted. Thus, if these waveforms would be to represent 
joint angle curves, two quite different movements would 
result despite equal summary statistics.  
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 Over the last two decades the focus in studies of learning 
has somewhat shifted and more and more studies, not only 
investigating performance variables but also the actual proc-
ess generating the performance, have emerged as their im-
portance has been noted in the literature [7]. The theory of 
dynamical systems to motor control (DST) has proven as a 
particular fruitful framework for investigating the changes 
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occurring during motor learning emphasizing non-linear 
behavior [8, 9]. Investigations under this paradigm focus on 
global patterns of actions, so-called attractors (collective 
variables) governing behavior [9, 10]. This let to led also to a 
shift of the research focus. From a DST perspective the ac-
tual process generating an action becomes much more cen-
tral for the investigation [7, 8, 10-14]. Research under this 
paradigm has shown, that there is not a one-to-one mapping 
between movement patterns underlying an action and the 
resulting outcome of the action [15], thereby emphasizing 

 

Fig. (1). Two waveforms with equal mean, range and standard 
deviations (Time and Value are of arbitrary units). 
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the analysis of process-oriented variables [16]. Thus, in order 
to discover the non-linear dynamics underlying movement a 
change of the research focus is necessary. With this shift 
comes also a change in the type of variables being investi-
gated and often the dependent variables used in these kinds 
of studies are rather of continuous and more complex nature 
as they describe processes in time. For example, the changes 
in joint segment angles during the execution of a javelin 
throw over a learning period. This entails not only a more 
refined view of what is actually happening during learning 
but also means that the analysis becomes much more in-
volved as the data structures being analyzed are much more 
complicated compared to the more straightforward discrete 
summary statistics. Thus, a researcher investigating continu-
ous data must have a somewhat better understanding of data 
analysis techniques compared to for example a straightfor-
ward reaction time measure [17]. The present paper ad-
dresses this problem and provides some guidelines about 
new research methods tailored to this kind of datasets 
thereby serving as an introduction for sports sciences re-
searchers interested in motor learning from a non-linear 
perspective. Several different measurement techniques useful 
for process-oriented variables will be presented. In the fol-
lowing, root-mean square approaches, Principal component 
analysis, Uncontrolled manifold analysis, and cluster analy-
sis will be introduced. The explanations of the methods 
thereby follows mainly the same structure, where first the 
motivation for the method is stated, followed by an introduc-
tion of its execution, some examples in the literature, and 
concludes with a reference to an article which is suitable as a 
first starting point for the interested reader. Central to the 
following approaches, is that in one way or another they are 
all concerned with the degrees of freedom problem to motor 
control [8, 18-20]. How actors choose a particular solution 
from the infinite many available is still one of the great prob-
lems in motor control and motor learning and therefore it 
comes as no surprise that many methods circle around this 
phenomenon. For sports scientists this problem is of particu-

lar interest as they deal with actions, which are inherently 
more complex than many tasks used in the laboratory [21]. 

ROOT MEAN SQUARE APPROACHES 

 Root mean square approaches have been used with con-
tinuous data for quite some time but have been recently ex-
tended into new directions. The basic question behind these 
approaches is to measure the similarity between different 
signal waveforms. Thereby, root-mean square (RMSE) and 
normalized root-mean square (NoRMS) measure the similar-
ity between two waveforms whereas the Cauchy criterion 
compares several waveforms together.  

 One of the more traditional approaches comparing the 
analysis of movement patterns based on time continuous data 
is the root-mean-squared-error (RMSE) criterion [1]. In its 
simplest formulation the deviations between two curves (e.g. 
a trial pathway and a criterion pathway) at successive time 
points of a trial pathway are calculated, squared, summed, 
and the square root is taken from the resulting deviation 
score. In Fig. (2) two synthetic pathways are depicted. In 
reality these could be for example joint angle or position 
data. The RMSE criterion calculates the differences between 
the two curves. 

 Basically, the procedure calculates the Euclidean distance 
between two vectors in RN, where N refers to the number of 
time slices of the two curves. 

RMSE  (xin  xcn )2

n1

N


 

 N is the number of time frames, i the trial, and c is the 
criterion trial. 

 A condition inherent to this approach comprises that both 
curves must have the same number of time points otherwise 
a comparison is not possible. Thus, in most application the 
data is time warped such that both curves posses the same 
number of frames. One problem with this approach is that 

 

Fig. (2). RMS differences between two trial pathways. 
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the magnitude of the difference varies with the number of 
time points used [compare also 22]. Thus, when comparing 
across participants the RMSE criterion should be normalized 
for example by dividing the score with the number of time 
points. 

 Sidaway, Heise, and Zohdi [23] developed an extension 
of this approach which estimates the variability in coordina-
tion between two joint angles based on angle-angle plot 
diagrams. Angle-Angle plot diagrams provide a simple ap-
proach to depict the coordination between body segments 
and are often used only heuristically. The procedure was 
called Normalized-Root-Mean-Square (NoRMS) method and 
measures the deviation of a group of trials from an average 
trial. The desired angle kinematics of two angles are time 
normalized in order to obtain the same number of time slices 
for each trial. The underlying assumption therefore is that 
movements are scaled in a similar fashion and the relative 
placement of key events does not change between trials. 
Based on the time-normalized representation of the group of 
trials, a mean trial is calculated and subsequently the devia-
tion from the mean trial for each trial using the RMSE for 
each angle is calculated (similar to the standard deviation in 
univariate statistics). The procedure was identified by 
Mullineaux, Barlett, and Bennett [24] as suitable to identify 
consistency in non-linear movement patterns. Although 
derived from angle-angle plots the procedure is not confined 
to angular data only but could also be used with positional or 
similar data. 

 In Fig. (3), a synthetic angle-angle plot is shown. Indi-
vidual trials are depicted in dark gray and the mean trial is 
shown in black. The NoRMS score calculates the deviation 
of the individual trials from the mean trial. As two angle are 
used, two variation scores per trial are obtained which are 
squared, summed and the square root is taken yielding a 
single score. The resulting NoRMS score is scaled according 
to the number of data frames N and the excursion of the 
mean curves.

Rin  x1n  x1n 2  x2n  x2n 2

RMSi 
Rin

2

n1

N


N

NoRMS 
RMSi

i1

I


I * L

 

 Sidaway and colleagues [23] applied the method to data 
from a rhythmical ski simulator task. The results indicated 
that skilled performers show greater consistency in move-
ment execution compared to novice performers in the knee-
knee and hip-knee angle-angle plots. Hodges, Hays, Horn, 
and Williams [25] applied the procedure to skill acquisition 
data from a novice player in a soccer in-step movement. The 
results showed decreasing NoRMS scores throughout the 
learning period indicating smaller movement variability in 
the lower limb segments [25, 26]. The NoRMS procedure 
has also been applied to gait data [27-29]. 

 I is the number of Trials, n is the frame number and N is 
the total number of frames, and L is the resultant excursion 
of the mean angle waveform. 

 A procedure similar to NoRMS was used in a the study 
conducted by Chen, Liu, and Mayer-Kress [30] investigating 
motor learning in a pedalo locomotor task. A variation of the 
RMS-approaches called the Cauchy criterion was used. The 
Cauchy criterion measures the differences between move-
ment pattern performed on consecutive trials. The criterion 
was based on the differences between the spatial joint dis-
placements in 3D space using a time-normalized representa-
tion of the movement. Differences between movement tra-
jectories are squared and summed over all variables. From 
this measure the square root is taken and divided by the 

Fig. (3). Angle-Angle plots of individual and mean trial. 
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number of trials I – 1 and number of input variables K. 

Ci 
1

K (I  1)
(xkn(i1)  xkni

k1

K


n1

N


 

 Hence, when the movement trajectories in subsequent 
trials are similar to each other, a small Ci value is obtained. 
Applied to the pedalor locomotor task the results indicated a 
decrease of the Cauchy scores during the learning period 
[30]. The rationale of the approach is based on the assump-
tion that throughout learning the variation of movement 
trajectories should decrease and the movement patterns of 
the performers converge onto a certain class of individual 
patterns. 

 In summary, the three approaches presented here all 
apply root-mean square approach to estimate deviations 
between executed trials. The Cauchy criterion estimates the 
differences between two trials, whereas the NoRMS proce-
dure estimates the variability of several trials together. The 
basic procedures hold few assumptions regarding the distri-
butions of the raw data and only penalizes deviations greater 
in magnitude than smaller deviations by squaring the devia-
tions, which seems to be an intuitively valid assumption. By 
using a whole body representation in the Cauchy-score dif-
ferences in movement coordination all body segments in-
cluded can be assessed simultaneously. 

 Important for all procedures is the assumption, that time 
normalization of trials does not influence the variability of 
the signal and accordingly biases the deviation scores [22, 
31, 32]. A potential confounding factor might be the intro-
duction of the range normalization used in the NoRMS pro-
cedure. When the scores are range normalized the underlying 
assumptions is that small deviations in one angle with only 
small range of motions are more important compared to 
deviations in another angle possessing a greater range of 
motion as the range normalization imposes a weighting 
scheme on the signal waveforms. This assumption might not 
be universally valid since one can argue that for the CNS, 
limiting the range of motion in one angle represents an equal 
difficult control problem as moving a segment. For example, 
when an actor waves an arm and holds the elbow angle con-
stant, the elbow angle has to be specifically controlled by the 
CNS due to the changing interaction torques resulting from 
the arm motions [33]. Thus, range normalization might mask 
this information and potentially bias the results [34, 35]. A 
problem in particular with the NoRMS procedure is related 
to the calculation of an average trial as the mean is quite 
sensitive to outliers. Such outlier trials will increase the de-
viation score disproportionately and potentially yield incor-
rect conclusions. Similarly, if the kinematics exhibit cluster-
ing behavior where the investigated group of trials contains 
sub groupings, the level of variability within each group may 
be very small but because of the usage of an average trial, 
the dissimilarity scores are potentially inflated. 

PRINCIPAL COMPONENT ANALYSIS 

 Another analytical tool suitable for analyzing changes in 
movement coordination during motor learning is principal 
component analysis (PCA) [17, 36, 37], which is in particu-
lar helpful for investigating actions involving many degrees 

of freedom. Principal component analysis is also called Kar-
hunen-Loève expansion or singular value decomposition 
[17]. Often used as a compression routine for example in 
computer science, principal component analysis allows to 
reduce the number of dimensions needed to describe a multi-
dimensional process [38]. The motivation for principal com-
ponent analysis is the question whether it is possible to rep-
resent a complex dataset containing many variables only 
through a few “principal” variables containing the main 
information of the data. The set of principal components 
represent orthogonal components of the variation in the data 
and are ordered according to the magnitude of the variation 
[39]. The first principal component explains the largest vari-
ance, the second component the second largest variance in 
the data and so on. If there are linear relationships between 
the different input variables these procedure yields typically 
only few principal components, which explain the bulk of 
the variation in the data.  

 The calculation of principal components is based on an 
orthonormal linear transformation of a data vector x, contain-
ing several variables, into uncorrelated principal components 
z  A ' x , where A is an orthogonal matrix [38]. As one 
seeks to compress the information in the data onto fewer 
dimensions, an intuitive approach seeks to explain the largest 
variance in the data through a combination of orthogonal and 
thus uncorrelated components. It can be shown that the solu-
tion to this optimization problem is given by the eigenvalues 
and corresponding eigenvectors of the sample covariance 
matrix of the dataset [17, 38, 40]. Accordingly, by using only 
the first few principal components one obtains a compressed 
representation of the input space. The contribution of each 
original variable to the principal component is described by 
the factor loadings or coefficients, which are simply the 
eigenvectors of the sample variance-covariance matrix. 
Geometrical, the principal components form a new rotated 
coordinate system, which is rotated such to maximize the 
variance along the axes. The new rotated coordinates of the 
data are called scores and describe the original data using the 
principal components [38, 41]. Studies using PCA typically 
are interested in the number of components necessary to 
describe the data and what their individual magnitudes are. 
Sometimes also the factor loading is investigated to gain 
information about which variables contribute to individual 
principal components [40] or the direction of the eigenvec-
tors is analyzed [42]. An interesting interpretation of the 
eigenvectors is given by Haken [43, p.158]. As the principal 
components describe the global behavior of the system, in 
some cases they can be interpreted as the order parameters of 
the system. Therefore, the eigenvectors may provide a direct 
interpretation based on a non-linear perspective [see also 37].  

 In Fig. (4a) joint angle data from a single participant 
performing a hook shoot is shown. The raw data matrix 
contains 10 variables. Purely, by visual inspection one can 
already see that there are some correlations between the 
different joint angles curves as the shapes of the waveforms 
show some strong similarities. Using a principal component 
analysis two principal components were extracted. These 
two components explain already more then 90% of the varia-
tion in the data as depicted in Fig. (4b). In Fig. (4c) the 
waveforms for these two principal components are shown. 
The first principal component (PC1) depicts a falling wave-
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Fig. (4). PCA analysis of a single hoot shot trial. a) raw joint angle curves. b) cumulated explained variance per principal component. 
c) curves of first two principal components d) principal component loadings for first two principal components. 

form whereas the second principal component (PC2) de-
scribes a unimodal peak. Inspection of the loadings in  
Fig. (4d) shows a strong positive loading of the right elbow 
with PC1 and negative loadings for the shoulders and the 
knees and positive loadings for the ankles. Except for the 
elbow joint angles the loadings are symmetric across the 
body. This waveform describes the coupled extension of the 
knees, ankles, and shoulders paired with the flexion in the 
throwing elbow. The second principal component, explain-
ing much smaller variance, indicates almost equally strong 
negative loadings for the ankles, hips and the right shoulder 
and positive loadings for the knees. The right elbow displays 
the strongest loadings and models the offset of the elbow 
movement with the flexion occurring after the extension of 
legs and shoulder. Thus, starting with ten input dimensions 
the information contained in the data could be reduced to 
only two dimensions, easing further analysis of the data. See 
also Daffertshofer et al. [17] for another accessible example. 

 The eigenvalues λk corresponding to the eigenvectors 
give a direct estimate of the variance explained by the corre-
sponding principal component. Thus by dividing each eigen-
value by the sum of all eigenvalues one obtains an estimate 

how much variance is explained through the corresponding 

principal component varexplained 
k

i
i1

K


 , as shown in Fig. 

(3b). Standard software packages like Matlab or GNU R 
calculate loading, scores, and eigenvalues and are thus read-
ily available without the need for complicated processing of 
the data. There are no clear-cut conventions about how much 
variance of the original data must be explained by the princi-
pal components for the compression to be sufficient. Typical 
values range between 80% and 90% of the data. Sometimes, 
higher principal components are actually more interesting as 
they highlight differences between conditions or actors 
whereas the first few principal components capture the 
commonalities across the dataset [17, 42]. Daffertshofer et 
al. [17] use this “data-driven filter” (p.423) approach to 
partition the data into deterministic and stochastic compo-
nents. The deterministic part is captured by the first few 
main principal components and the smaller components 
describe the stochastic part. They give an interesting exam-
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ple from walking were the smaller components capture the 
impact of the foot with the ground [17]. 

 Several insightful applications of PCA are available in 
the literature. Post, Daffertshofer, and Beek [44] investigated 
cascade ball juggling during self-paced and fast-paced trials 
using a PCA approach. Based on their modeling approach of 
the three balls’ flight paths four dimensions were deemed 
sufficient to model the behavior of the system. The subse-
quent application of PCA analysis to the ball kinematics 
corroborated this a-priori modeling. Comparing fast and self-
paced juggling, a switch from four to two main components 
from the former to the latter condition demonstrated how 
PCA analysis was able to extract important information 
about movement organization regarding dimensionality. The 
authors stressed the importance of studying time series and 
the spatiotemporal variability, which assists in identification 
of the most significant events during movement execution 
without biasing measurement a-priori in contrast to tradi-
tional discrete measurements [44]. Chen, Liu, Mayer-Kress, 
and Newell [30] used PCA for the analysis of the pedalo-
cycling movement. Three to six components extracted by 
PCA were sufficient for describing 95% of the variance in 
the data. The first component accounted for more than half 
of the variance and its influence increased over the training 
period. The loading of the components varied between par-
ticipants. Elipot et al. [45] investigated the underwater glid-
ing motion during swimming start using PCA. They showed 
that by covarying the shoulder, hip, and knee joint move-
ments swimmers attained a more streamlined posture opti-
mizing underwater gliding velocity [45]. Forner-Corder, 
Levin, Li, and Swinnen [37] investigated the application of 
PCA to rhythmical parallel flexion-extension movements of 
elbows and wrists. The authors calculated the relative phase 
between the different segments and processed the resulting 
data with PCA. The identified movement patterning based on 
PCA matched the a-priori known differences in coordination 
patterning. E.g. when all four segments were used in an in-
phase manner a single principle component was sufficient in 
order to capture data dynamics. These findings lead the au-
thors to conclude that the PCA approach provides valid re-
sults. Investigating the limitation of PCA the authors noted 
that for actions where movements other than strict in-phase-
anti phase patterns are prescribed, the resulting principal 
components structure will be more complex and accordingly 
more difficult to analyze [37]. Balasubramaniam and Turvey 
[46] investigated coordination in hula hooping using a non-
linear variant of traditional PCA. Instead of the correlation 
matrix, the authors used the mutual information between 
input signals to uncover redundancies in input space [47]. 
Movements represented by 3D kinematics of the lower limbs 
joint positions served as input signals. By using the mutual 
information the authors hoped to protect against non-
linearities and non-stationarities occurring in the input sig-
nals [46, p.180]. Other application of PCA include force 
tasks [48], reaching and grasping [42, 49, 50], muscle activa-
tion [51, 52], gait [53-56], standing and squatting [40, 57, 
58], and stair climbing [59]. Thus, many insightful applica-
tions of PCA are available in the literature. However, one 
has to be aware that apart from different tasks being investi-
gated that there is also a large discrepancy in used data pre-
processing methods, which has to be taken into account. 

Currently, there is no greed upon standard whether variables 
should be normalized in time and/or amplitude and how 
many explained variance is sufficient as these decisions also 
depend on the specific hypothesis being investigated. A good 
starting point for further research into principal component 
analysis is the tutorial by Daffertshofer et al. [17]. 

 As the principal component analysis is based on a linear 
approach some investigations to extend PCA into the non-
linear domain have been undertaken [60, 61]. Many, of these 
approaches are based on neural networks schemes in order to 
estimate the non-linear mapping between input and output 
variables. However, with neural networks it is somewhat 
problematic to generalize as the information is distributed 
across different weights and is not easily accessible [see also 
62, 63]. Thus, further work is necessary especially as stan-
dard linear PCA is still not used to its full extend. 

UNCONTROLLED MANIFOLD ANALYSIS 

 The technique of Uncontrolled manifold analysis has 
been introduced by Scholz and Schöner [64] and is based on 
ideas from robotic motion-planning. The question underlying 
uncontrolled manifold analysis is whether movement vari-
ability contains certain structure correlated to the task per-
formance. By mapping variability of so-called elementary 
variables to the variability of a performance variable hidden 
structural features of action variability are uncovered [64, 
65]. Elementary variables can be joint segment angles, joint 
torques, or some other quantity the researchers believe the 
system is influencing to control its outcome. These variables 
span the K degrees of freedom available to the system [65]. 
The performance or task variables on the other hand are the 
variables, which are necessary to accomplish a task [65]. 
Both elementary and performance variables are derived from 
theoretical considerations. For example, when investigating 
an upright standing task the elementary variables could be 
the joint angles and the task variable could be the horizontal 
position of the centre of mass [66]. In Fig. (5) body configu-
rations for a simple 2D model of upright standing are shown. 
In Fig. (5a), two different body configurations are depicted 
which leave the task variable, the position of the centre of 
mass, unchanged. The elementary variables in this case are 
the ankle angle, the knee angle, and the hip angle and the 
neck angle. In Fig. (5b), two body configurations are de-
picted which yield two different positions of the centre of 
mass. Thus, variability of the elementary variables can either 
lead to changes in the performance variable or leaves the 
performance variable unchanged. The reason why this is 
possible is a result that more degrees of freedom for the 
elementary variable compared to the degrees of freedom of 
the performance variable are available. UCM analysis allows 
thus to investigate, how the actor deals with this problem.  

 To perform an uncontrolled manifold analysis of a task, 
the researcher has to derive a model, which maps the domain 
of the elementary variables to the domain of the performance 
variable. A simple example could the task of upright stand-
ing, where the centre of mass has to stay within the support 
area of the feet. To adopt an UCM analysis a geometrical 
model of the body segments can be used which maps 
changes in joint segment angles to changes in centre of mass 
position based on a linked kinematic chain model [67] as the 
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joint angles and the positions of the segment centre of 
masses specify the horizontal position of the body centre of 
mass (compare Fig. 6) with the latter staying constant. 
Therefore, the horizontal position of the centre of mass of the 
body CoM  is a function of the joint angles x

CoM x  f ankle, knee,hip ,neck . 
 Assuming the centre of mass of each segment is located 
at the midpoint of the segment, setting the origin at the tip of 
the toes, and calculating joint angles as the angle between the 
body segment and horizontal the following model results: 

CoM x  0.5l foot m foot 

l foot  0.5lshin cos(ankle ) mshin 

l foot  lshin cos(ankle )  0.5lthigh cos( knee ) mthigh 

l foot  lshin cos(ankle )  lthigh cos( knee )  0.5ltrunk cos( hip ) mtrunk 

l foot  lshin cos(ankle )  lthigh cos( knee )  ltrunk cos(hip )  0.5lhead cos(neck ) mhead

�

 Based on this model formulation, the variability of the 
elementary task variables can be separated into two orthogo-
nal components. One component describes the variation 
which alters the value of a to-be-controlled performance 
variable, the other component leaves the task variable un-
changed [64]. All system configurations leaving the per-
formance variable unchanged are collected into a manifold 
and equally all configurations changing the performance 
variable are collected into another manifold. The former 
manifold is called the uncontrolled manifold whereas the 
latter is the manifold orthogonal to the uncontrolled mani-
fold. The rationale underlying UCM analysis rests on the 
assumption, that the central nervous system (CNS) should 
not be concerned with variability which does not change the 
task outcome and only controls the variability which changes 
the control variable [64]. The superfluous degrees of free-
dom can be used by the actor to satisfy additional constraints 
like energetic efficiency [35, 68], which can also be tested 
using UCM. The separation of the variability of the elemen-
tary variable variability is based on the Jacobian of the 
model, which is the matrix of the first-order partial derivates. 
In detail, an average trial is formulated and the values for the 
elementary variables are used to parameterize the Jacobian. 
For the example of the CoMx during simple upright standing 
the following Jacobian results. 

 

Fig. (5). Body configuration leaving the CoM unchanged (a) and 
changed (b). 

 

Fig. (6). Simple geometrical model of the body CoM based on 
individual segment CoM’s. 
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 To obtain the uncontrolled manifold, a basis (εi) spanning 

the null space of the Jacobian , i = 1, 2, …, 
n<K and its orthogonal space with d = K – n dimensions is 
calculated. The former represents the linearized uncontrolled 
manifold [compare 64 for more details]. If no direct sym-
bolic formula for the mapping can be derived, it is also pos-
sible to use a regression model of the elementary variables 
onto the performance variable to calculate an approximate 
Jacobian [69]. Once both spaces are obtained the deviations 
of each trial from the average trial are projected onto these 
spaces and the magnitude of the projections vectors divided 
by the dimensions of each space serves as an estimate of the 
variability. As an average trial must be calculated, UCM 

 J CoMx i  0
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analysis requires the collection of multiple trials, although 
there is also the possibility to calculate the UCM from a 
single trial if one can assume that the task requirements over 
a certain time do not change [70]. Interpreting the results 
obtained from UCM, it is possible to test hypotheses about 
the control of specific performance variables. If the actor is 
controlling the hypothesized performance variables the nor-
malized projections onto the uncontrolled manifold are larger 
compared to the projection onto orthogonal space.  
 The application of UCM analysis is particularly suitable 
for the application in studies of learning where changes in 
motor coordination or differences between skill levels can be 
investigated using this approach. For example, in a study 
investigating adaptations in reaching under the influence of a 
force field Yang, Scholz, and Latash [71] showed that the 
variation of the UCM increased after a learning period. This 
suggests that the learners acquired the necessary motor skills 
to take advantage of the UCM [72]. Further applications of 
UCM analysis include pointing and reaching [71, 73-75], 
pistol shooting [76], handwriting [77], finger-force produc-
tion [48], quiet stand [48], and Frisbee throwing [72] have 
proven its utility for understanding motor control processes. 
Methodologically, PCA and UCM share some common 
ground. As UCM investigates the covariation of the elemen-
tary variables with regard to the workspace, PCA measures 
something similar as it is based on the covariation of the 
variables. However, UCM provides more specific informa-
tion as the task goal is directly represented in the calculations 
[78]. 

 Uncontrolled manifold analysis is particular interesting 
under a non-linear learning paradigm as it provides a differ-
ent interpretation of movement variability. As movement 
variability has lost its classical interpretation as noise and 
error, the UCM framework further supports this view by 
showing that movement variability can posses inherent struc-
ture to ensure task success [79]. This has also some impor-
tant implications for the interpretations of movement vari-
ability and stability. For example, when movement variabil-
ity is measured using standard methods like range of motion 
or standard deviations it is actually difficult to make a state-
ment about the stability of movement. The variability could 
be exclusively within the uncontrolled manifold and thus 
does not affect task performance at all which challenges 
traditional notions of movement variability. Taken together, 
uncontrolled manifold analysis is a useful tool, which can be 
adapted to different tasks and domains. Through the mapping 
between process and performance variables UCM provides 
an elegant way to formulate specific research hypotheses 
about actions. For a sports scientist, learning uncontrolled 
manifold analysis will help to gain a much better understand-
ing about the skill underlying sports actions by investigating 
movement variability. For the interested reader a good start-
ing point is the paper by Scholz and Schöner [64] and the 
book by Latash [80]. One caveat is again the usage of an 
average reference trial with the same problems as mentioned 
above. 

CLUSTER ANALYSIS 

 Cluster analysis represents a heuristic analysis tool to 
uncover grouping structure in populations of different ob-

jects [81]. Application of cluster analysis is common in vari-
ous fields of research including biology [82], medicine [83], 
economics [84]. When an experimenter uses cluster analysis 
he/she wants to find hidden patterning contained in the data 
consisting typically of large and complex amounts of data 
[85]. By summarizing the data through groups, the cluster 
analysis allows a better and concise understanding of the 
data. However, cluster analysis sometimes has a somewhat 
dubious connotation attached to it [85]. In parts this is based 
on the principles how the clustering algorithms work. Be-
cause even when there is no real clustering present in the 
data the cluster analysis will always group the data into clus-
ters [86]. Thus, the results of each cluster analysis must un-
dergo a validation procedure as otherwise the results may be 
suspicious [83, 87].  

 In general, two types of clusters analysis have been used 
in a movement science context: 1.) Hierarchical cluster 
analysis and 2.) partitioning or k-means methods [81]. The 
main difference between them is that partitioning methods 
will construct a certain number of cluster from the dataset 
and the number has to be set by the experimenter prior to the 
analysis. In contrasts, hierarchical cluster analysis will group 
the data into ever larger clusters and the experimenter has to 
choose the appropriate number of cluster as part of the 
analysis result. Thus, sometimes the two methods are used in 
sequence with first determining the number of cluster using 
hierarchical cluster analysis as an exploratory step and sub-
sequently refining the clusters using a partitioning method. 
One serious problem of hierarchical cluster analysis algo-
rithms is their inability to correct an earlier made decision. 
Thus, once an object is grouped into a cluster this cannot be 
undone in a later step [88]. 

 The application of cluster analysis demands several proc-
essing steps [88, 89]. First, the desired input variables have 
to be chosen, and if necessary time and/or range normalized. 
Each individual trial thereby represents an object for the 
cluster analysis. Subsequently a distance matrix must be 
calculated. Central to the application of cluster analysis is the 
notion of similarity or dissimilarity between objects [88]. 
The grouping of the dataset by the cluster analysis is based 
on the specific measure of similarity. Objects, which are 
similar to each other, are grouped together into one cluster 
and dissimilar objects are separated into different clusters. 
Depending on the type and scale of the used variables sev-
eral different measures are available, including for example 
Euclidean, Manhatten, and 1-correlation-distance. Setting up 
an appropriate method to measure similarity between objects 
is central for an appropriate cluster analysis. For movement 
data most of the time the Euclidean distance is used [90]. 
With regard to the 1-correlation distance one can draw a 
connection to principal component analysis. During each 
clustering step the correlation between the objects is calcu-
lated and the objects are grouped accordingly. This can be 
interpreted as sort of a hierarchical principal component 
analysis as the fundamental entity underlying PCA is the 
variance-covariance matrix [89]. 

 Once a measure method is chosen, a cluster analysis 
algorithm must be chosen. Again, several different methods 
are available, each with certain strengths and weaknesses and 
no simple cookbook approach is possible [81]. Finally, after 
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execution of the cluster analysis the obtained results must be 
validated. Explanation of the different decisions involved in 
cluster analysis is beyond the scope of the present paper and 
specialized literature should be consulted [83, 90-92]. The 
main result of a hierarchical cluster analysis is a dendrogram 
displaying the grouping structure obtained by the cluster 
analysis. 

 In Fig. (7) an example of a dendrogram with synthetic 
data is shown. For these data the cluster analysis found two 
different groups from a dataset of 20 objects. The objects 
contained in each group are depicted by leafs at the bottom 
of the dendrogram. When objects are connected to each 
other, the connections indicate that these objects belong to 
the same cluster. The greater the height between connected 
objects the greater the difference between them. The dendro-
gram gives therefore a quick way to assess the results of a 
hierarchical cluster analysis and should always be included 
in the results. In Fig. (7) it can be also seen that a hierarchi-
cal cluster analysis starts with distinct objects, which are 
iteratively collected into larger and larger cluster until finally 
all objects are grouped into a single cluster. The decision for 
the researcher therefore involves to “cut” the tree at the cer-
tain height into different sub-trees. These sub-trees are the 
resulting clusters. One caveat of cluster analysis is related to 
the reliability of the results. The cluster analysis algorithm 
will always group the data into clusters irrespective whether 
there are any true cluster in the data. Therefore, it is manda-
tory to always validate the results obtained through cluster 
analysis. Unfortunately this has not always been the case in 
the literature. Again, several different validation methods are 
available in the literature and combining several measures 

together will give the most robust results [90]. 

 Numerous applications of cluster analysis have been 
performed in motor control research. Howard and Wilson 
[91] used a cluster analysis to describe movement patterning 
in the backstroke swim start in ten participants. Using a body 
segment model as an input vector, movement postures were 
grouped according to their similarity in a hierarchical clus-
tering algorithm. The authors were able to identify twenty-
one model action patterns, which differentiated different 
starting techniques [91]. Ball and Best [92] investigated 
weight transfer during the golf swing in 62 participants dur-
ing ten simulated golf drives. Based on the centre of pressure 
trajectory, the authors were able to distinguish between dif-
ferent movement strategies used by the participants. Using 
3D motion capture, Schöllhorn [93] investigated discus 
throws in one participant using eight trials in total. The re-
sults showed a division of the eight trials into two groups. 
Jaitner, Mendoza, and Schöllhorn [94] investigated the run-
up phase in long jumping using a cluster analysis. Based on 
the obtained clustering the authors were able to determine 
differences in the execution of the steps prior to the take-off, 
with great inter-individual differences. Another prominent 
area where several applications of cluster analysis have been 
undertaken concerns the study of gait in cerebral palsy pa-
tients. O’Byrne, Jenkinson, and O’Brien [95] investigated 
gait pattern in 146 patients with cerebral palsy using a cluster 
analysis approach. The resulting grouping was indicative of 
different walking styles and was used to establish a reliable 
identification scheme for clinicians. Chow and colleagues 
[96] investigated the movement patterning during learning of 
an in-step kick. Using cluster analysis the authors were able 

 

Fig. (7). Dendrogram of a synthetic dataset obtain using a hierarchical cluster analysis. 
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to show that movement patterning did not take a linear route 
but that the learners should sudden jumps during learning as 
well as regressions back to earlier movement pattern. Other 
applications of cluster analysis include basketball [97], 
handball [98], foot pressure data [99, 100], swimming [101], 
grip force [102], finger force [103], body sway [104], and 
finger tremor [105], golf movement patterning [106]. 

 Cluster analysis represents a promising methodological 
approach that can distinguish between globally similar and 
different movement patterns. Using a time-continuous ap-
proach it is possible to assess timing between different seg-
ments together with range of motion information providing 
interesting insight beyond classical summary statistics. The 
tutorial by Rein et al. [89] gives further hints about the ap-
plication of cluster analysis regarding choice of distance and 
validation methods. 

SYNTHESIS AND OUTLOOK 

 Several “classical” analysis methods are available which 
allow researchers in sports sciences to investigate changes 
occurring during motor learning. The methods presented in 
the present work allow the analysis of more complex phe-
nomena by going beyond the traditional summary statistics 
and present a more complete picture of the complex and non-
linear process of motor control and motor learning. At pre-
sent there is a large body literature movement variability 
spanning from early important work [8] to more recent in-
vestigations [107], thereby demonstrating the importance of 
movement variability as means for functional action adapta-
tion [79, 108, 109]. The tools described in the present paper 
enable the researcher to investigate movement variability in 
more depth and further provide tools to describe the global 
patterns underlying actions. They assist in identifying collec-
tive variables governing the dynamics of the behavior. As 
these attractors represent a central notion in dynamic systems 
theory this will also help to extend the scope of dynamical 
systems theory. Further, the methods presented here make it 
possible to transfer laboratory paradigms used in classical 
investigations of dynamical systems theory and apply them 
to sports movements in the field [5]. 

 Probably the greatest merit will be gained however by 
not only applying these methods in isolation but by combin-
ing the different approaches. For example, uncontrolled 
manifold analysis is based on the analysis of variance around 
an average trial. Thus, when datasets are investigated which 
differ greatly in their waveforms the assumption of a repre-
sentative average trial becomes problematic. Here cluster 
analysis could assist by first grouping trials together into 
clusters and subsequently performing an uncontrolled mani-
fold analysis for each separate cluster. Similar, sometimes 
using principal component analysis to factor out the impor-
tant information contained in the data could serve as the first 
step before a cluster analysis is executed. The challenge for 
these approaches will be that the researcher has to be able to 
follow his data through the different processing steps. 

 The presented methods are particular helpful for sports 
scientists as they are typically faced with more complex 
actions compared to standard laboratory tasks, which do not 
scale easily to complex multi-joint movements [12, 15, 21]. 
Hereby, in specific the question how to deal with movement 

variability becomes more and more important. As already 
explained in the part about UCM, movement variability per-
se does not say anything about movement stability as this 
variability can occur within the uncontrolled manifold not 
affecting the task performance. How is this variability struc-
ture when learning a complex movement through the active 
live span of athlete?  

Based on approaches from dynamical systems movement 
stability has been studied using so-called perturbation para-
digms [110-114]. Here the performance of an actor is per-
turbed through some kind of interference. Observing the 
dynamics of the behavior, it becomes possible to estimate the 
stability of the system [115]. However, at present this has 
been done for only a few movements and much more re-
search on this question seems warranted in order to gain a 
better understanding about stability of actions. Again, a 
combination of the different methods introduced here could 
provide some new insights. For example, when a movement 
loses stability how does this affect the uncontrolled mani-
fold? When a transition between different movement patterns 
occurs, how does this affect PCA, clustering and UCM? Is 
there a relation to the dimensionality of the action as ana-
lyzed by PCA prior to movement pattern changes?  

 The present paper serves only as a first introduction for 
sports scientists on what methods are used in research and 
which can be applied to sports researchers. This summary is 
by no means exhaustive and is mainly due to the preferences 
of the author and many more methods are available in the 
literature. However, as the questions about motor learning 
become more complex so will be the tools to answer these 
questions. Hopefully the paper created some interest by 
applied sports scientist and coaches to maybe use some more 
complex tools for their own data.  
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