
 The Open Sports Sciences Journal, 2012, 5, (Suppl 1-M3) 17-25 17 

 
 1875-399X/12 2012 Bentham Open 

Open Access 

Functions of Learning and the Acquisition of Motor Skills (With Reference 
to Sport) 

Karl M. Newell1 and Yeou-Teh Liu*,2 

1Department of Kinesiology, The Pennsylvania State University, USA 
2Graduate Institute of Exercise and Sport Science, National Taiwan Normal University, Taipei, Taiwan  

Abstract: In this paper we present theoretical and operational perspectives on the functions of motor learning with refer-
ence to sport skills. The data available on this issue are largely from non-sport motor skills but inferences are drawn to the 
link between processes of learning and their impact on the function for performance outcome over practice time. It is 
shown that the traditional assumption of the power law as the function of learning is not as well supported as assumed. 
Furthermore, there are strong tendencies for task properties to influence the functions of learning. This is most strongly 
revealed in contrasts of tasks that essentially require the task-relevant scaling of an already-learned coordination mode to 
those that require transitions and the learning of a coordination mode heretofore not produced (as is often the case with 
learning a sport skill). In our dynamical systems framework to motor learning the multiple time scales of change in task 
outcomes over time originate from the system’s trajectory on an evolving attractor landscape. Different bifurcations be-
tween attractor organizations and transient phenomena can lead to a small set of functions including the exponential, 
power law, or S-shaped learning curves, though we interpret the power law as an idealized function of learning. 
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FUNCTIONS OF LEARNING AND THE ACQUISI-
TION OF SPORTS SKILLS 

 There is a more than 100-year history to the study of mo-
tor skill acquisition. The centerpiece of the study of motor 
learning has been and is the change in performance outcome 
over practice time, although there are many other variables 
that one could/should consider in the analysis of learning. 
The plotting of performance outcome over time is the foun-
dation of understanding the dynamics of performance change 
andis the basis for making inferencesabout the process(es) of 
learning, in part through determination of the mathematical 
functions that capture the resultant learning curve or, per-
formance curve as some prefer to call it [1]. This duality in 
labeling is due to the fact that learning is an inference from 
the change in performance outcome over time in that it can-
not be observed directly – only aspects of performance are 
directly observable. 

 There is the long-standing question as to whether the 
functions of learning are general across all categories of 
tasks or whether there are some task-particular aspects to the 
functions of learning in relation to task type. For example, as 
we consider the learning of sports skills, do we anticipate a 
priori that the principles and practice of the acquisition of 
sport skills are different than what they are for musical, in-
dustrial, military and human factors skills? Furthermore, 
there have been and are many categorizations of motor skills 
themselves: including closed and open skills, ballistic and  
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graded skills, gross and fine motor skills, and the more gen-
eral categories of posture, locomotion and manipulation. 
Again, do we anticipate a priori that there are different func-
tions of learning for different categories of motor skills? This 
question of the generality of the function of motor skill 
learning across motor tasks, and sports skills in particular,is 
a focus of this paper. 

 For the moment it is suffice to say that while a task influ-
ence on learning has been hinted at many times in several 
domains of the learning literature,the categorizations of mo-
tor skills have not typically and formally led todifferent theo-
ries and hypotheses of the functions of learning that are mo-
tor skill or task dependent.The net result is that our ideas 
about the functions of learning sports skills are based as 
muchor more on the learning curves of motor task categories 
other than those of sport.We noted in advance that there are 
actually limited empirical data sets on the functions of learn-
ing sports skills.Thus, this analysis by synthesis of the func-
tions of learning in motor skills is driven considerably by 
theoretical considerations about motor skill learning that 
have in general been independent of task categorizations. 

FUNCTIONS AND STAGES OF MOTOR LEARNING 

 Through the last century there have been many theoreti-
cal frameworks developed for the acquisition of motor skills 
[2]. A common view of theories or the less formal theorizing 
about learning has been that there are stages through which 
learners progress in the acquisition of skill, and there have 
been several unique expressions of this central idea. The 
notion of stages in motor skill acquisition is based formally 
or informally on the assumption that there are changes in a 
set of processes that, when viewed as a collective, are cap-
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tured by a particular qualitative state. These changes in state 
provide the basis for qualitative and quantitative changes in 
the performance dynamics as reflected in the learning curve 
[3]. 

 

Fig. (1). Three phases of development toward adult expertise (from 
[9]). 

 The concept of stages is particularly well known in the 
context of changes that have been associated with develop-
ment in general including motor development. Piaget’s the-
ory [4] of cognitive development is the quintessential exam-
ple of developmental stages and relates to the developing 
individual’s ability to assimilate and understand information. 
The stages were defined and labeled: sensori-motor devel-
opment (birth to 2 years), preoperational (starts to talk to 
about 7 years), concrete (first grade to early adolescence) 
and formal operations (adolescence). In this context we need 
to keep in mind Brainerd’s [5] admonition that the concept 
of stages in development should be reserved for a collective 
qualitative state based on multiple dimensions rather than a 
particular qualitative distinction on a single dimension of 
behavior. Thus, in Brainerd’s view a phase transition to a 
new qualitative movement coordination mode would not 
constitute the basis for a new stage of development, in spite 
of the qualitative change. In other words, a true transition in 
stage would require the collective change of several proc-
esses that support a new and more global state. 

 There have been expositions of the stages of change in 
the field of motor learning. Two of the most well known and 
still quoted stage of motor learning frameworks are those of 
Fitts [6] and Bernstein [7]. There have been several other 
stage accounts of motor skill acquisition including those of 
Gentile [8] and Ericsson, Krampe, and Tesch-Romer [9]. 

 Fitts [6] proposed three sequential stages of motor skill 
acquisition: namely cognitive, associative and autonomous. 
The cognitive stage is dominated by a high degree of cogni-
tive activity and the development of the basic movement 
pattern. The associative stage reflects a refinement of the 
movement pattern, fewer errors and less cognitive and atten-
tional demands. Finally, the autonomous stage has the per-
formance of the movement being virtually automatic, even 
fewer errors and little cognitive involvement. 

 For Bernstein [7] motor skill acquisition was essentially 
an issue of mastering the redundant degrees of freedom of 
the system. He proposed 3 stages of learning built on this 
central idea. Stage 1 was that of freezing the degrees of free-
dom that were emphasized in joint space. Further practice 
led to stage 2 where there is a progressive release of the fro-
zen joint space degrees of freedom. Finally, in stage 3 the 
performer learns to exploit the reactive forces that arise from 
the movement pattern itself. 

 Ericsson et al. [9] characterized the changes in motor 
skill acquisition with particular emphasis on the nature of 
what expertise represents in skilled performance. Fig. (1) 
shows their perspective of 3 stages of motor learning. The 
figure reflects qualitative change in the performance out-
come that is driven significantly in their view by the amount 
of deliberate practice. This account provides a link of the 
qualitative aspects of stages of motor skill learning to quali-
tative changes in performance outcome – albeit in a descrip-
tive hypothetical way. 

 In summary, there has been very little formal linking of 
these respective stages of learning, and others that have been 
proposed, to the changes in the function of performance out-
come. The stages of learning in the Fitts framework[6]are 
largely a description of how the behavioral aspects of per-
formance change over practice time.Bernstein’s framework 
is also largely descriptive but on biological dimensions of 
motor skill acquisition. 

 The reason for briefly reiterating these established and 
well-known stage accounts of motor skill learning is that 
they have implied with varying degrees of explicitness that 
there will be qualitative changes in the dynamics of perform-
ance outcome that can be mapped to the defined stages of 
learning (as in the Ericsson figure). However, this assump-
tion has not been investigated as few motor learning studies 
have linked indices of the stages of learning to change in the 
performance outcome. Indeed, where functions of learning 
have been assessed, the predominant form of the change in 
performance outcome is that of a monotonic function, as is 
often shown in textbook characterizations of the functions of 
learning. 

 Fig. (2) shows the classic set of hypothetical monotonic 
functions that have often been taken as candidates for motor 
skill learning (e.g., [10]). The functions are all monotonic in 
that they show continuous change over time in the same di-
rection with no qualitative change. Given that they are hypo-
thetical of the learning functions they also do not show any 
trial-to-trial fluctuation or other processes of change to per-
formance outcome. An implication has been that different 
tasks can realize these different forms of the learning curve 
but this task dependent relation for the functions of motor 
skill acquisition, including those of sport skills, has not been 
formally developed. 

 In closing this section it is worth emphasizing that most 
theoretical perspectives of motor skill acquisition hold that 
there are qualitative changes to the processes of learning as a 
function of practice time. The inference is that these changes 
would be associated with the performance dynamics – thus, 
leading to the outcome that there would be an associated 
qualitative change in the performance outcome. Neverthe-
less, this process-outcome relation has never been formalized 
very well with the consequence that in a number of cases we 
have qualitative changes in the processes of motor skill ac-
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quisition reflected in the monotonic change in performance 
[10]. This leaves the accounts of the functions of motor skill 
learning largely a descriptive curve fitting exercise with little 
direct link to and even guidance from theory in motor skill 
acquisition.This approach to curve fitting in the study of 
learning is what Thurstone [11] referred to as empirical 
curve fitting as opposed to thetheoretically driven rational 
curve fitting. 

EMPIRICAL EVIDENCE ON THE FUNCTIONS OF 
MOTOR SKILL LEARNING 

 There have been many attempts to characterize the func-
tion of motor learning by fitting a mathematical equation to 
the performance outcome data over time [12,13]. Functions 
that map to the hypothetical monotonic trends shown in Fig. 
(2) have been well represented. Nevertheless, the two most 
commonly fitted functions to motor learning data are those 
of the exponential and the power law. Both of these func-
tions can take on, as shown in a later section of the paper, 
various expressions that have a different number of parame-
ters [12]. In their most elementary form we have: 

Exponential: y = emt (1) 

Power law: y = Atm (2) 

Where y is the performance score, t is the trial, m is the ex-
ponent of change and A is a scaling constant. 

 It has often been stated that there is not a single learning 
curve that is representative of the performance dynamics for 
all individuals learning all tasks. For example, the learning 
curves that arise can be influenced by characteristics of the 
individual performer, properties of the task, the conditions of 
practice, the variable of measurement of performance out-
come and whether the data are averaged across individuals or 
not [10]. The formal contribution of these factors to the func-
tion of learning curves has, however, not been forthcoming 
through investigation. 

 A. Newell and Rosenbloom [12] reported a synthesis of 
the published learning functions at that time and concluded 
based on their interpretation of the data that the power law 
was the ubiquitous law of learning. Their representative 
power law was a 3 or 4 parameter version of the more basic 
power law shown in Equation 2. The power law expression 
of the change in performance over time was mapped to their 
information processing based chunking theory of learning. 

 The A. Newell and Rosenbloom [12] paper analyzed the 
functions of change in several learning data sets. Neverthe-
less, there are two data sets from the motor domain that are 
perhaps the most quoted examples in regard to evidence for a 
power law function of motor learning. These are the studies 
of Snoddy [14] and Crossman [15] with the essential learn-
ing data from each study shown in Fig. (3). 

 

Fig. (2). Typical hypothetical learning curves (from [10]). 

 Snoddy [14] reported a study of adults learning a maze 
drawing task where performance was measured with an 
amalgamated performance score based on both spatial and 
temporal dimensions. Fig. (3A) shows our re-plotting of the 
Snoddy data that reflects 20 trials of practice a day over 4 
days. A power law function fits the data well except for the 
early trials, a departure that is often either overlooked or just 
ignored. It is also the case that the fluctuations of the data 
points around the function do not appear random. Neverthe-
less, the Snoddy [14] data have been interpreted as the first 
and exemplary example of power law motor learning as re-
flected originally in the plotting of the data on double loga-
rithmic paper.  

 Crossman [15] reported a study of the performance over 
time of Cuban factory workers who made cigars. The Fig. 
(3B) shows the task time (time to roll a cigar) as a function 
of trials of practice. The change in the performance dynam-
ics (reduction in task time) follows well a power law over 
the initial year of practice trials and appears to only be lim-
ited by the constraints of the cigar-rolling machine rather 
than the limits of the performer. Indeed, the Crossman [15] 
study, given its large number of practice trials, has often 
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Fig. (3).Two of the most well known demonstrations of power law 
motor learning. A. from[14]; B from [15]. 
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been used as an example of the notion that there are no limits 
to human learning. 

 The Crossman [15] study with its power law representa-
tion of learning has received notoriety because of the very 
large number of practice trials – some 10 million trials over 
7 ½ years. The sufficiency of the number of practice trials 
has long been a limitation of motor learning experiments and 
this study has been seen as an unique and important example 
of the dynamics of performance that arise from very long-
term practice. However, it is often overlooked that each data 
point in Fig. (3b) represents the performance of a different 
participant and also that the information compression is con-
siderable with the large degree of data averaging and the 
non-reporting of performance on the majority of days over 
the years. A cross-sectional approach to the study of motor 
learning has its place but the failure to have a within-
participant set of performance dynamics tends to undermine 
the veracity of the power law interpretation usually afforded 
this study. 

 Nevertheless, A. Newell and Rosenbloom [12] concluded 
that the power law is the ubiquitous law of learning but, as 
we note here, the evidence from at least two of the key 
power law learning studies is not as compelling as advo-
cated. Furthermore, many papers subsequently endorsed the 
centrality of the power law in learning (e.g., [16-19]) that in 
turn provided further support to the universality interpreta-
tion of the power law for learning. It took another 20 years 
or so for challenges to the idea of the power law as the uni-
versal law of learning [20,21,3]. There are a number of dif-
ferent aspects to the challenge on the appropriateness of the 
power law for motor learning.  

 In many studies of motor learning the function is deter-
mined by a best fitting criterion of the percent of variance 
accounted for without consideration of theory. The problem 
is that the differences in the fit of functions are small and 
often of the order of around 1% [12,13]. This challenge in 
distinguishing small quantitative differences in percent of 
variance in function fitting opens the consideration of using 
qualitative criteria that relate to each function as a means to 
distinguish between them [22]. For example, a distinguishing 
feature of an exponential is that it has a single time scale of 
proportional change whereby the change from trial to trial is 
proportional to the initial level of performance. This qualita-
tive property provides a straightforward way to test and in-
terpret the qualitative aspects of the performance dynamics 
unlike the percent of variance accounted for. Another sig-
nificant criticism of the power law interpretation of learning 
is based on the fact that averaging data can mask the actual 
change in the performance dynamics of individuals that 
make up the averaged group function, a challenge that is 
most relevant given that averaged data have typically been 
used in the assessment of the function of learning. 

INDIVIDUAL VS AVERAGED FUNCTIONS 

 It has long been advocated that averaging learning data 
can change the determination of the function of learning 
[23]. Nevertheless, it would appear that most evaluations of 
the function of learning are based on averaged data. Indeed, 
in the A. Newell and Rosenbloom [12] paper the function 
fitting is predominantly on group averaged data.We have not 

been able to find published motor learning data from indi-
vidual performers where a power law function is shown to be 
a better fit when formally contrasted with other function fits. 
Indeed, most function fitting in learning data has been of the 
demonstration kind rather than the investigation kind. 

 Motor learning data can be averaged in two ways. One is 
to average the data over participants. The other is to average 
the data over trial blocks as opposed to analyzing the indi-
vidual trial data. In most experimental studies of motor 
learning both forms of averaging are used simultaneously in 
the analysis of data. These averaging procedures can com-
bine to mask the determination of the actual time scale of 
change of each individual learner.  

 In [3] we showed through simulation that averaging a 
group of exponential functions with different exponents 
leads to the average curve approximating a power law. This 
is because the different exponents of each exponential are 
bringing into the averaged data different time scales so that 
the average in principle more closely approximates a power 
law that has infinite time scales over the range studied. Thus, 
in this simulation case the averaging of the data over partici-
pants led to the determination of a group learning function 
that did not represent the qualitative properties of learning of 
any single individual. Furthermore, the inference is that the 
more people over whom the averaging is done in this exam-
ple, the more closely a power law will be approximated be-
cause more time scales are being brought into the average. 

 The averaging of trials is performed with regularity in the 
motor learning domain but there do not appear to be any 
guiding principles to the technical assumptions of this proce-
dure. The primary goal inthe smoothing of the data is to take 
away the trial-to-trial fluctuations through the averaging pro-
cedure. This approach seems to fit well with the expression 
of idealized hypothetical functions of learning that are shown 
in Fig. (2). On the other hand the information in the trial-to-
trial fluctuations is lost in part or all together with the pro-
gressive masking of the time scale of change by increasing 
the trial block size in the averaging. 

 A final point here is on the time scales of motor learning 
[3] which is beyond the focus of this paper for full treatment. 
It is that the appropriate time scale of the abscissa in motor 
learning studies is not entirely clear because it has not been 
sufficiently investigated. Performance data from each trial 
are usually plotted on the basis of trials leading to equal in-
tervals between trials and then also the samegap over the 
days of no practice between sessions, in spite of the fact that 
the time between trials is different within a session from that 
between session. However, the data could be plotted on the 
basis of real clock time to investigate the functions of learn-
ing but they rarely are. The more general theoretical question 
is a determination of the appropriate time-related dimension 
on which to investigate the function of learning. 

CHARACTERISTIC TIME SCALES OF MOTOR 
LEARNING 

 Our approach to understanding learning curves has been 
through the principles of an epigenetic landscape for consid-
ering the role of characteristic time scales of learning. The 
approach also offers a system identification strategy for de-
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composing the processes of learning curves. In this account, 
the change of performance over time is the product of a su-
perposition of characteristic exponential time scales that re-
flect the influence of different processes. Our approach can 
also produce the power law of practice but we have hypothe-
sized that this function may prove to be an idealized case of 
motor learning rather than that of a ubiquitous law [3,24-26]. 

Time Scales 

 The phrase time scales has been increasingly used of late 
in the study of many aspects of behavioral change over time. 
The use is typically descriptive in the sense of capturing the 
time duration of an event or process to unfold for an action. 
There is, however, a more rigorous approach based in the 
physics of motion that provides a dynamical set of principles 
to the determination of a time scale and a basis for our ap-
proach to the dynamics of motor learning. 

 Briefly, in dynamical systems there are two types of ide-
alized motions that lead to the fundamental concept of time 
scales. These motions have either periodic oscillations [27] 
or growth/decay at a constant rate [28]. In oscillatory sys-
tems the intrinsic time scale is the period or inverse of fre-
quency. In growth/decay systems the intrinsic time scale is 
the inverse of the growth/decay rate. These two classes of 
behavior and combinations thereof are in linear dynamical 
systems the only forms of movement observed and thus are 
the basis for the characteristic time scales of change. 

 The oscillatory and growth/decay processes are funda-
mental to describing behavior close to a fixed point – the 
concept that is associated with equilibrium regions of the 
dynamics. For example, fixed points correspond to the ab-
sence of motion as in a pendulum at rest. An important prin-
ciple is that the motion close to a fixed point can be ap-
proximated so as to be described by linear dynamical sys-
tems. This means that the motion of the trajectory can be 
characterized by the exponential function of Equation 1 or 
the real part of a complex exponential function [3]. The time 
scale within a growth or decay process to a fixed point is 
characterized by the time for the dynamics to double/half the 
distance to the fixed point. Thus, in our approach a time 
scale is not simply the duration of an event but importantly 
the characteristic time duration of an event that arises from a 
periodic or growth/decay dynamical process.  

 These assumptions about fixed points and attractor dy-
namics provide the theoretical basis for the assessment of the 
characteristic time scales of change in motor learning and 
development. We interpret the multiple time scales of change 
in task outcome over time to originate from the system’s 
trajectory on an evolving attractor landscape. Different bi-
furcations between attractor organizations and transient phe-
nomena can lead to exponential, power law or s-shaped 
learning curves, among other pathways of change. In this 
view there is not a single law (function) of learning as has 
been traditionally sought in behavioral science but rather a 
coherent set of dynamical principles that can lead to a small 
set of different functions of change in task outcome and limb 
trajectories [3,24,25]. 

 

Landscape Model of Characteristic Time Scales 

 The approach of mapping a single function of learning to 
the performance dynamics is grounded in the theoretical 
proposition of a single process organizing learning and the 
persistent change in performance over time. In this view, the 
performance outcome is typically taken to reflect the con-
struct of memory largely on the basis of the positive influ-
ence of the degree practice and the negative influence of the 
increasing time between practice. Thus, the single and cen-
tral construct of memory strength is the foundation for learn-
ing, retention and transfer as reflected in the properties of 
performance score changes in learning curves. 

 However, there is a long history to the idea that the per-
formance dynamics of learning curves is the product of mul-
tiple processes that, in addition to memory strength, include 
constructs such as warm-up, inhibition, noise and fatigue 
[1,29,30] Schmidt & Lee, 2005; [31]. The theoretical per-
spective of multiple processes to learning provides a rational 
basis for multiple characteristic time scales in the perform-
ance dynamics together with the theoretical and practical 
need in motor learning for system identification strategies to 
tease out the contribution of these processes to the perform-
ance dynamics. This is a more focused challenge than that 
presented in the introduction of the paper in regard to the 
relation between the notion of stages of learning and changes 
in the performance dynamics as reflected in learning curves. 

 A central assumption of our approach is that the different 
processes that contribute to the performance dynamics of 
acquiring motor skills, including sports skills, have different 
time scales. For example, learning is typically interpreted as 
a long-term relatively persistent change, whereas the influ-
ences of warm-up and fatigue on performance are more short 
term and, interestingly, are reversible through rest. Indeed, 
the physically demanding whole body actions of many sports 
skills may increase the relative contribution of these transient 
processes to the performance dynamics. In general, our ap-
proach holds that the persistent processes of learning can be 
distinguished from the more short term and transient influ-
ence processes on performance.  

 In our theoretical perspective one can model the data 
through determining the contributions of characteristic time 
scales to the performance dynamics. An essential feature is 
the identification of behavioral patterns as locations in a 
landscape and the performance values as elevation levels 
with this landscape [3,24,25]. The goal of the task is as-
signed the lowest elevation in the landscape and in dynami-
cal terms this is seen as the point attractor. The axes of the 
landscape are the time scales of the exponentials that are 
derived from the superimposed exponential fit to the data. 

 The prototypical example of this approach to modeling 
the characteristic time scales of performance over time may 
be understood in our reanalysis of the original Snoddy [14] 
data shown in Fig. (3A). Fig. (4) shows a landscape with two 
distinct time scales reconstructed from these same learning 
data of [14]. The relatively fast time scale captures the per-
formance dynamics at the beginning of each practice session 
while the relatively slow time scale captures the persistent  
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change in the performance dynamics over the days of prac-
tice. Fig. (5) shows the same data plotted in a more typical 
learning curve frame of reference with the power law super-
imposed for comparison. Clearly, the two time scale model 
fits the Snoddy [14] data better than the power law and re-
veals the dominant contribution of two characteristic time 
scales to the performance outcome over days. 

 We have conducted more formal investigations of the 
two time scale model in the [14] data set and in other motor 

learning data sets [32]. Equations 3 and 4 capture the per-
formance dynamics for the two time scale model. The enve-
lope function in the model is represented as an exponential 
decay that occurs across all trials, while the fast time-scale 
changes as the function of the trials within each practice ses-
sion, j. The two time scale model has been compared to other 
standard models of learning data though Akaike information 
criterion evaluations [33] and a rigorous theoretical assess-
ment of the exponents and asymptotic values of the equa-
tions. The two time scale model was shown to consistently 
fit the performance dynamics as well or better in both indi-
vidual and group averaged learning data sets. 

 
Fig. (4). Landscape associated with Snoddy’s score data (black 
dots) as elevation levels. The four clusters correspond to the four 
training sessions. The x-behavioral variable corresponds to the slow 
time-scale (shallow dimension) whereas the y-variable corresponds 
to the fast time-scale (steep dimension). For sessions 3 and 4 we 
plot the contour lines of the first and most successful trials. Note, 
that each contour line illustrates the degree of behavioral degener-
acy (redundancy) for the given performance score (reproduced with 
permission from [25]). 

 

Fig. (5). Performance data Vnvs trial number n from Fig. (4) of 
[14]. Main figure shows distance to asymptotic score Va = 46 in 
linear scale. Magenta curve: exponential regression through first ten 
scores and best score of each session. Yellow, Cyan, Orange: Ex-
ponential fit to each of the practice sessions. Green: Power law fit 
through all data points. Note that the ten first points are not in-
cluded in the main regression whereas in our model all data points 
can be accounted for by the model (reproduced with permission 
from [25]). 

 Slow time scale: 

yen(n) = yinf + aen e
-en n (3) 

 Slow and Fast time scale: 

yj(n) = yinf + aen e
-en n + aj e

-j(n-nj) (4) 

 The model describes how a performance related variable 
y(n) converges to an asymptotic target value yinf as time n –
measured in units of trial numbers – increases. aen is the ini-
tial distance to the performance goal yinf and -enthe ex-
ponent for the envelope slow time scale function whereas aj 
determines the amount of warm-up decrement at the begin-
ning of session j, starting with trial number nj. The exponent-
for the respective practice session j=1,…,4is given by-j. 
The model holds that the exponents for the fast time scale 
are the same on each day anassumption of invariance that 
reduces the number of parameters in the model. 

 The epigenetic landscape framework supplemented with 
the system identification approach to decomposing the per-
formance dynamics clearly shows in the group averaged data 
of [14] that the two time scale model fits the data qualita-
tively and quantitatively better than the power law and other 
models of learning. As we have stated previously, however, 
this does not mean that all performance dynamics will fit the 
two characteristic time scale model. It is our postulation that 
this model will be most relevant when there are no bifurca-
tions in the performance dynamics, that is, when the task 
requires merely the rescaling of an already established coor-
dination mode to the task outcome [34]. 

 A question to be pursued in the analysis of learning 
curves is what further processes could be decomposed from 
the performance dynamics beyond the characteristic time 
scale of the warm-up decrement adaptation phase and that of 
the relatively permanent change over all trials and days. We 
have mentioned the short-term fast time scale and the re-
versible influences of motivation, attention and fatigue that 
would be particularly influential in sport skills. 

 In [32] we modeled learning data from a star tracing task 
[35] with a 3 characteristic time scale model that included 
the negative influence of fatigue. In this demonstration of 
extending the model to 3 time scales we showed that it pro-
vided a better fit to the performance dynamics but impor-
tantly in a way that was motivated by theory. In general, we 
estimate that additional processes will be difficult to tease 
out of the performance dynamics and this modeling effort 
may need to use other ways to analyze the performance data. 
For example, a consideration of the best score achieved in a 
learning session to define the dynamics may prove useful, 
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but this just reflects a broader need to go beyond the stan-
dard analysis strategy of single function curve fitting to all 
the performance data. 

 And, in closing this section, we would propose that this 
approach to the system identification of performance dynam-
ics holds promise for a new approach to the analysis of the 
effects of practice distributions on motor learning, including 
sport skills. This is a topic that has lost impetus since Hull’s 
theoretical formations [30,36] regarding reactive inhibition 
and learning that were investigated primarily on continuous 
laboratory tasks, such as the pursuit rotor. The distinguishing 
of the transient adaptive and persistent learning effects on 
practice schedules should provide new ways to consider such 
old problems as oblivescence and reminiscence [37], massed 
/distributed practice schedules [1], and practice condition 
effects more generally. 

LEARNING CURVES FOR TASKS WITH COORDI-
NATION MODE TRANSITIONS 

 The multiple characteristic superimposed exponential 
time scale model of learning is restricted to tasks that have 
fixed point dynamics. In practice these are tasks that require 
largely the rescaling in space, time or force of an already 
established coordination mode to be learned [34]. The acqui-
sition of many sports skills requires the transition of coordi-
nation modes to occur and thus arenot in general in the re-
scaling category of skills, although there are elements of this 
process through the processes of coordination mode changes. 
Thus, sport skills will often require the acquisition of coordi-
nation modes that are more specific than those of the funda-
mental movement skills that are formed in infancy and early 
childhood. There has been considerably less study of the 
learning of motor tasks that require a transition of coordina-
tion to realize the task goal and this is why the monotonic 
learning functions of movement scaling tasks are less rele-
vant to sport, even though they have dominated the study of 
motor learning in laboratory tasks. 

 We show here one example of motor learning that re-
quires a coordination transition to accomplish the task with 
the net result that the learning curve becomes rather different 
from those emphasized in fixed point dynamics and, more-
over, different learners have different patterns to their change 
in performance outcome over time that is related to different 
patterns of change in the movement coordination dynamics. 
[38,39] have studied the performance dynamics of learning 
the roller ball task. In this task, the outer shell of a ball-like 
object is held in the hand and needs to be rotated so as to 
preserve or even increase the velocity of a ball that is held 
within the outer shell. This condition can only be realized by 
finding the appropriate spatial phase relation of the motion 
of the inner ball to that of the outer shell.  

 Fig. (6) is taken from [38] and shows in effect 3 types of 
learners over the 3 days of practice. One group rescales the 
ball velocity and makes the task relevant spatial phase transi-
tion of ball motions. A second group succeeds in improving 
the scaling of inner ball velocity but never realizes the phase 
transition necessary to keep the ball rolling. Finally, a third 
group of learners shows no change within or over the prac-
tice sessions. These patterns of change in the performance 
dynamics are very different from those of the rescaling tasks 

emphasized so far in this paper. We would claim, however, 
that they are much more relevant to the kinds of dynamics to 
be found in the learning of many sports skills or motor tasks 
more generally where a new pattern of coordination is re-
quired (including infant motor development). 

 The transition points in the performance dynamics were 
also characterized by the increased variability in ball velocity 
a feature that is a classic hallmark property of a phase transi-

 

Fig. (6). Performance data of 3 classes of learner over days of 
learning the roller ball task (reproduced with permission from [26]). 
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tion [40]. In a subsequent rollerball study [39] bi-stability 
and hysteresis in the coordination mode were revealed as a 
manifestation of dependence on the initial conditions. It was 
shown that the transition from failure to success in the roller 
ball task as a function of practice time can be modeled as a 
saddle-node bifurcation corresponding to a first order phase 
transition. This bifurcation would support an S-shaped learn-
ing curve in the outcome score but it would only be realized 
with a fuller data set than provided in Fig. (6). In this task it 
was also proposed that task difficulty acts as a control pa-
rameter that is a dual to skill level (that is, increased skill 
level is equivalent to reduced task difficulty and vice-versa) 
and that also effectively compensates for practice time 
[39].We would project that the learning of sports skills 
would channel the succession of a number of phase transi-
tions but as implied earlier there are little or no data that 
speak directly to this issue. 

 Thus, the learning of motor tasks that require directly or 
indirectly a coordination mode transition are likely to have 
very different patterns to the performance outcome dynamics 
than are shown in what we have called movement rescaling 
tasks. In themotor tasks with a coordination mode transition 
the performance outcome would seem to not necessarily be 
an instance of a monotonic function. The tasks with transi-
tion invoke additional time scales to performance dynamics 
that the field is only beginning to investigate. 

CONCLUDING COMMENTS 

 In this paper we have presented theoretical and opera-
tional perspectives to the functions of learning motor skills 
with particular reference to sport skills. It was shown that the 
traditional assumption of the power law as the function of 
learning is not as well supported as assumed. Furthermore, 
there are strong tendencies of task influence on the functions 
of learning that are revealed in contrasts of tasks that essen-
tially require the task-relevant scaling of an already-learned 
coordination mode to those that require transitions and the 
learning of a coordination mode here to for not produced (as 
is often the case with a sport skill). This distinction also re-
flects the differences in the dynamics of performance out-
come as a function of their associated changes to the move-
ment pattern. In our view, the multiple time scales of change 
in task outcome over time are interpreted to originate from 
the system’s trajectory on an evolving attractor landscape. 
Different bifurcations between attractor organizations and 
transient phenomena can lead to exponential, power law, or 
S-shaped learning curves, though we see the power law as an 
idealized function of learning. 
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