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Abstract: The purpose of this study was to assess the accuracy and reliability of the three-dimensional reconstruction - 

above and below water - of a calibration volume for three-dimensional analysis in swimming. The calibration volume 

(3x3x3m) was placed in a 25m x 12.5m x 2m swimming pool and was recorded simultaneously by 4 under and 2 above 

water synchronized cameras. To assess the number of control points required to maximise the accuracy of three-

dimensional coordinate reconstruction, 12 markers in the calibrated space were digitised over 10 fields for each underwa-

ter and above water camera views. Seven series of 12 markers, using 8, 12, 16, 20, 24, 28 and 30 control points were dig-

itised. Direct linear transformation methods were used to estimate the marker locations on the volume. Comparison 

among different numbers of control points showed that the set of 20 (underwater) and 16 (above water) points produced 

the most accurate results. The average root mean square errors were (x, y and z, respectively): (i) 4.85mm, 2.52mm and 

7.43mm (set of 20 digitised underwater points) and (ii) 4.11mm, 5.69mm and 3.90mm (set of 16 digitised above water 

points). The standard deviation in underwater cameras was 1.22mm, 0.33mm and 3.47mm, and 1.57mm, 2.63mm and 

2.35mm for above water cameras (for x, y and z, respectively). The calibration volume was found to have high accuracy 

and reliability. 
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INTRODUCTION 

 In multiplanar activities such as swimming, kinematical 

analysis should be three-dimensional (3D). However, most 

studies in swimming were limited to two-dimensional (2D) 

analysis techniques, which imply higher number of errors, 

once disregards especial characteristics of movements, par-

ticularly of the limbs. In 3D analysis the most popular tech-

nique used for the transformation of the 2D image coordi-

nates into 3D space coordinates is the direct linear transfor-

mation procedure (DLT) [1]. With the DLT technique an 

appropriate number of points with known 3D coordinates 

(control points) on a calibration volume are used for the cali-

bration of the recording space. In this procedure, the number 

and distribution [1] of the control points, as well as the size 

of calibration volume
 

[2] affect reconstruction accuracy. 

Psycharakis et al.
 
[3] showed improvement in the calibration 

accuracy when the number of control points were increased 

from 10 to 20, using a calibration volume of 6.75m
3
, while 

Gourgoulis et al. [4] using measurements carried out in two 

different recording conditions: (i) out of the water and (ii) in 

the water, found larger reconstruction errors in water com-

pared to above water conditions, whatever the size of the 

calibration volume. Moreover, Chen et al. [1] and Kwon [5] 

pointed out that reconstruction accuracy should be assessed 

using a number of validation points that did not serve as con-

trol points since the DLT parameters are optimised for the 

reconstruction of the control points. 
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 The purpose of this study was to assess the accuracy of 
the 3D reconstruction, above and below water of a calibra-
tion volume for 3D analysis in swimming. 

METHODS 

 The calibration volume (3x3x3m) was placed into a 25m 

x 12.5m x 2m swimming pool and recorded simultaneously 

by 4 under and 2 above water cameras (Sony
®

 DCR-

HC42E). The cameras were at depths varying from 1.0 to 

1.5m below the water surface to avoid errors due to the cam-

era axes being in the same planes as the reference planes of 

the volume. The cameras above water were varying from 3.0 

to 3.5m above water surface. The angle between the axes of 

the two above water camera axes was approximately 120°, 

while the angles between axes of adjacent below water cam-

era axes varied from approximately 75°
 

to 110° The follow-

ing procedure was applied to assess the number of control 

points required to maximise the accuracy of 3D coordinate 

reconstruction for the below water calibration: 12 markers in 

the calibrated space were digitised over 10 fields for each 

underwater and above water camera viewers. Seven series of 

digitising were performed for this set of 12 markers, using 8, 

12, 16, 20, 24, 28 and 30 control points respectively. To 

avoid overestimating accuracy the 12 markers selected for 

these comparisons were not included in any set of calibration 

points [6]. The 3D coordinates were obtained using the DLT 

procedure [7], and the associated error with RMS. The dif-

ferences between the obtained and the known values were 

calculated for the x, y, and z coordinates of each point for 

each of the 10 video fields. To obtain an estimate of reliabil-

ity, the same operator (in order to avoid any inter-operator 
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errors) repeated the procedure 10 times. The reliability 

measure was considered to be the standard deviation across 

all digitisations of the marker.  

RESULTS 

 In Table 1 it is presented the mean difference and the 
mean RMS errors for the x, y and z coordinates, for different 
numbers of control points for the underwater cameras. The 
accuracy increased as the number of control points increased 
from 8 to 16, and from 20 to 28. A further increase to 30 
points did not improve the accuracy of the measurements.  

 In Table 2 it is possible to observe the mean difference 
and the mean RMS errors for the x, y and z coordinates, for 
different numbers of control points in above water cameras, 
where the accuracy increased as the number of control points 
increased from 24 to 30.  

 For the calculations performed following the selection of 
a set of 12 control points, the average RMS errors for the set 
of 20 digitised points underwater, was 4.85mm, 2.52mm and 
7.43mm for the x, y and z directions, respectively, represent-
ing 0.16%, 0.08% and 0.25% of the calibrated space. For the 
set of 16 digitised points above water, the average RMS er-
rors was 4.11mm, 5.69mm and 3.90mm for the x, y and z 

directions respectively, representing 0.14%, 0.19% and 
0.13% of the calibrated space. These values were lower than 
the values found for all the sets of different numbers of con-
trol points described above, both under and above water. The 
standard deviation in underwater cameras was 1.22mm, 
0.33mm and 3.47mm for the x, y and z directions respec-
tively. In the above water cameras the values are 1.57mm, 
2.63mm and 2.35mm. 

DISCUSSION 

 Considering the calibration volume used, the errors were 

similar or even lower than those reported in other studies. 

Psycharakis et al. [3] reported the mean difference for the set 

of 30 digitised points was 3.3 mm, 2.6 mm and 4.0 mm, for 

the x, y and z axes respectively. The average RMS error for 

these points was 3.9 mm, 3.8 mm and 4.8 mm for the x, y 

and z directions respectively. Gourgoulis et al.
 
[4]

 
using two 

calibration volumes, one smaller and other larger, were the 

RMS values were respectively 1.61mm and 2.35mm in the 

transverse axis, 2.99mm and 4.64mm in the longitudinal axis 

and 2.83mm and 2.59mm in the vertical axis. Payton and 

Bartlett [8] reported corresponding values of 2.3mm, 3.3mm 

and 2.9mm while Payton et al. [9] reported mean errors of 

Table 1. Mean Difference and Mean RMS Errors for Underwater Cameras in the x, y and z Axis 

Underwater Cameras 

RMS (mm) Mean Difference (mm) 

Number of Control Points 

x y z x y z 

8 6.38 2.93 3.52 0.09 0.41 0.12 

12 5.93 3.31 4.43 0.35 0.11 0.19 

16 4.88 2.93 8.09 0.24 0.09 0.65 

20 4.85 2.52 7.43 0.24 0.06 0.55 

24 4.35 2.38 9.71 0.19 0.06 0.94 

28 3.39 2.52 13.9 0.11 0.06 1.93 

30 3.05 2.52 9.13 0.09 0.06 0.83 

 
Table 2. Mean Difference and Mean RMS Errors for the Above Water Cameras in the x, y and z Axis 

Above Water Cameras 

RMS (mm) Mean Difference (mm) 

Number of Control Points 

x y z x y z 

8 1.26 1.26 6.7 0.02 0.02 0.08 

12 2.18 8.32 2.85 4.76 0.69 0.12 

16 4.11 5.69 3.9 0.17 0.00 0.78 

20 4.11 5.69 4.34 0.17 0.00 0.78 

24 4.11 3.82 9.87 0.17 0.15 0.06 

28 1.65 2.75 4.81 0.00 0.08 0.00 

30 0.33 1.17 4.25 0.29 0.00 0.53 
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1.5 to 3.1 mm for a 1.1 m
3

 

volume (representing 0.2%, of the 

calibrated space for each direction). Using a similar volume 

in a study of the golf swing, Coleman and Rankin [10] re-

ported RMS errors of 5.1 to 9.8 mm (representing 0.4%, 

0.5% and 0.3% of the calibrated space, for the x, y and z 

directions respectively). The reliabilities were lower when 

compared with Psycharakis’ study [3], where the reliabilities 

indicated by repeated digitisations of one marker were ±0.4 

mm, ±0.5 mm and ±0.4 mm, for the X, Y and Z axes respec-

tively. 
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