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Abstract:

Introduction: Middle-distance running requires a balance of aerobic and anaerobic energy systems, necessitating
efficient physiological profiling for optimized training. Performance biomarkers, such as the Speed Reserve Ratio
(SRR), have been used to improve training and performance but may not always be practical for routine assessment.
Other biomarkers, such as skeletal muscle oxygenation (SmO,) and blood lactate concentration ([La]Jbmax), may be
more cost-effective and easier to integrate into training programs than the SRR. This study investigates the
relationship between SmO, and [La]bmax with SRR in NCAA Division I middle-distance runners to determine whether
these physiological markers could serve as viable alternatives for athlete profiling.

Methods: Male NCAA Division I athletes (n = 11) completed a series of sprint trials and incremental treadmill tests
to assess SmO, and blood lactate responses.

Results: The change in skeletal muscle oxygenation (ASmO,) exhibited a significant positive correlation with SRR (r
= 0.656, p = 0.028), while Reoxygenation Hemoglobin Slope (ROHS) displayed a negative correlation (r = -0.644, p =
0.033), suggesting that oxygen utilization and recovery kinetics differentiate athletes with higher anaerobic or
aerobic capacities.

Discussion: These findings highlight the potential of SmO,-derived metrics as accessible, noninvasive alternatives
for profiling aerobic-anaerobic balance in middle-distance runners, particularly in situations where SRR
measurement is impractical or unavailable. Future research should explore how these markers integrate into training
models, their predictive validity across different competition levels, and their application in optimizing individualized
athlete development programs.

Conclusion: Integrating noninvasive SmO, monitoring can be a beneficial addition to training programs for
enhancing performance outcomes in middle-distance runners.

Keywords: Middle distance running, Physiological profiling, NCAA Division I, Speed reserve ratio, Blood lactate
concentration.

License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

© 2026 The Author(s). Published by Bentham Open.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public
CrossMark

Received: July 23, 2025
Revised: September 12, 2025
Accepted: October 15, 2025
Published: January 26, 2026

Cite as: Kraft B, Kraft A, Schick E, Escobar K, Valenzuela K, Cotter J. Comparing Muscle Oxygenation and Peak Blood ®
Lactate Concentration in Division 1 College Middle-Distance Athletes: A Speed Reserve Ratio Analysis. Open Sports Sci J,

2026; 19: €1875399X431328. http://dx.doi.org/10.2174/011875399X431328251130185212

*Address correspondence to this author at the Department of Kinesiology, California State University Long Beach, Long
Beach, CA, USA; E-mail: kevin.valenzuela@csulb.edu

Send Orders for Reprints to
reprints@benthamscience.net


https://opensportssciencesjournal.com/
https://orcid.org/0000-0002-7930-9523
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:kevin.valenzuela@csulb.edu
http://dx.doi.org/10.2174/011875399X431328251130185212
http://crossmark.crossref.org/dialog/?doi=10.2174/011875399X431328251130185212&domain=pdf
https://creativecommons.org/licenses/by/4.0/
mailto:reprints@benthamscience.net
https://opensportssciencesjournal.com/

2 The Open Sports Sciences Journal, 2026, Vol. 19

1. INTRODUCTION

Middle-distance running is a unique discipline in track
and field that relies on a close balance of energy
contributions from both aerobic and anaerobic energy
systems [1, 2]. This dual energetic demand helps explain
why these events are considered the “middle ground” of
aerobic and anaerobic abilities, where adaptations to both
energy systems can influence performance. These varying
energy demands lead to a physiologically diverse group of
competitors, with some athletes achieving success through
higher aerobic capacity and others through anaerobic
power [3, 4]. This diversity means that a one-size-fits-all
training approach may not be effective. Profiling helps
illuminate an athlete’s strengths and, more importantly,
their weaknesses, allowing coaches to individualize
training that maintains an athlete’s strengths and
improves the areas where they are lacking. This is
especially relevant in events like the 800 meters, where
some of the world’s best athletes are successful due to
higher maximal sprint speed and anaerobic speed reserve,
enabling them to respond to late-race surges and pace
changes [3]. Identifying these traits can help coaches align
training with the specific demands of the event. In
addition, profiling has been used to guide targeted
training interventions—athletes who excel aerobically but
underperform anaerobically can improve performance by
training their anaerobic system more directly [5].
Researchers and coaches can categorize an athlete’s
abilities using different physiological profiling techniques.
A physiological profile refers to the comprehensive
characterization of an athlete’s aerobic, anaerobic, and
neuromuscular/mechanical capabilities, reflecting their
unique bioenergetic and biomechanical strengths and
limitations that influence performance [6-8].

Middle-distance runners tend to vary in bioenergetic
ability, highlighting the need for accurate profiling of
biomarkers that can improve understanding of an athlete’s
unique strengths and weaknesses [9]. Traditional profiling
metrics, like VO,max and lactate threshold, have been
shown to be insufficient in predicting middle-distance race
performance and fail to encompass an athlete’s anaerobic
abilities [3, 4]. A more recent metric used in middle-
distance profiling is the Speed Reserve Ratio (SRR), which
addresses the limitations of other metrics by measuring
both an athlete’s aerobic and anaerobic capacity. The SRR
is calculated as the ratio of an athlete’s maximum sprint
speed (MSS) to their maximum aerobic speed (MAS).
Higher SRR values indicate greater anaerobic power,
while lower SRR values indicate stronger aerobic capacity
[10]. By capturing both speed domains of performance,
SRR vyields a more comprehensive bioenergetic profile
[11].

Despite its utility as a profiling metric, obtaining
accurate SRR values can be difficult due to the specialized
equipment required for testing, such as high-speed
treadmills, metabolic carts, and laser timing systems.
Practical limitations of accurately measuring SRR have
prompted interest in other noninvasive biomarkers that
could serve as alternatives. Consequently, newer
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techniques are being explored because of their portability,
relatively low cost, sensitivity to training adaptations, and
demonstrated links to middle-distance performance
[12-20].

Muscle oxygen saturation (SmO,), which refers to the
balance between oxygen delivery and utilization within
skeletal muscle and is commonly assessed noninvasively
using near-infrared spectroscopy (NIRS), is one alternative
metric used to profile athletes. Several SmO,-derived
metrics have correlated with athletic performance
outcomes in both sprint and endurance athletes. These
metrics include SmO, delta (ASmO,), muscle
deoxygenation slope (MdO, slope), reoxygenation slope
(ROHS), and the inflection point (IP). ASmO, is calculated
as the percent change from baseline to minimum SmO,
during exercise, reflecting local oxygen extraction and
oxidative efficiency [16]. MdO, slope represents the initial
rate of desaturation during the onset of exercise,
indicating the speed of aerobic engagement [17]. IP is the
breakpoint in the SmO, curve during exercise,
corresponding to systemic lactate threshold and the shift
toward anaerobic metabolism [18]. ROHS is the rate of
SmO, recovery post-exercise, assessing the muscle’s
capacity for oxygen restoration [19]. Although these SmO,
metrics have proven useful in athletics, their ability to
profile and distinguish physiological subgroups in middle-
distance runners remains unexplored.

Peak post-exercise blood lactate concentration
([LaJbmax), defined as the highest blood lactate value
measured after exercise, has also been associated with
both middle-distance performance and an athlete’s
anaerobic capacity [20, 21]. Athletes with higher [La]Jbmax
values tend to demonstrate greater anaerobic power and
sprint performance, while lower values may indicate
improved lactate clearance and more efficient aerobic
metabolism [14]. This balance between lactate production
and clearance is relevant in middle-distance performance,
where both anaerobic and aerobic systems are
significantly taxed. However, despite the utility of
[Lalbmax in identifying general metabolic capabilities, its
interpretability is constrained by physiological and
methodological factors [22, 23]. In addition, the
correlational strength between [Lalbmax and SRR has yet
to be examined.

Given these considerations, this study aims to
determine whether SmO,-derived metrics and/or [La]bmax
can serve as practical, noninvasive alternatives to SRR for
profiling the aerobic-anaerobic balance in NCAA Division I
middle-distance runners. We hypothesized that SmO,-
derived metrics, including the percent change in muscle
oxygenation (ASmO,), the muscle deoxygenation slope
(MdO, slope), the inflection point (IP), and the
reoxygenation slope (ROHS), would significantly correlate
with SRR, offering insight into an athlete’s balance of
aerobic and anaerobic capabilities. Specifically, we
expected that higher ASmO, values and steeper MdO,
slopes would be associated with lower SRR values,
reflecting greater aerobic efficiency. We also hypothesized



Comparing Muscle Oxygenation and Peak Blood Lactate Concentration 3

that a higher IP would occur in athletes with lower SRR
values, indicating the ability to sustain higher workloads
before shifting toward anaerobic metabolism. Additionally,
we predicted that a steeper ROHS would correlate with
lower SRR wvalues, signifying more efficient oxygen
recovery following maximal exercise. Finally, we expected
that elevated [Lalbmax would correlate with higher SRR
values, reinforcing its role as an indicator of anaerobic
power.

2. METHODOLOGY

2.1. Study Design

This cross-sectional study examined relationships
among SmO, metrics, [Lalbmax, and SRR in NCAA
Division I middle-distance runners. All testing took place
at the Movement Science Lab and Jack Rose Track at
CSULB. To minimize fatigue and ensure data quality,
testing was divided into three separate days, with a
minimum of 48 hours of recovery provided between
sessions. Day 1 included baseline anthropometrics and a
familiarization trial. Day 2 assessed MSS via sprint tests
on the outdoor track. Day 3 consisted of an incremental
treadmill protocol to determine MAS and record SmO, via
NIRS, with post-test blood samples collected for [La]bmax.
Distributing assessments in this manner reduced carry-
over fatigue and ensured maximal effort in both anaerobic
and aerobic tests. Ethical clearance was granted by the
Institutional Review Board (IRB) of CSU Long Beach,
ensuring adherence to ethical standards in research
involving human subjects.

2.2. Procedures

All  testing procedures were performed under
controlled conditions, with standardized warm-ups and
cooldowns implemented to maintain participant
consistency.

2.2.1. Day 1: Anthropometric Assessments and
Familiarization Trial

The first session focused on baseline measurements
and participant familiarization with the experimental
protocol. Upon arrival, height and body mass were
recorded using a calibrated Health O Meter 500KL
stadiometer and digital scale. Body composition was
assessed via seven-site skinfolds (triceps, subscapular,
chest, midaxillary, suprailiac, abdomen, thigh), with
measurements taken using a Lange skinfold caliper and
calculated using the Jackson and Pollock equation [24]. A
single investigator performed all body composition
assessments to minimize measurement variability. For the
familiarization test, participants completed a self-paced
three-mile treadmill run while wearing a reusable face
mask (COSMED, Rome, Italy). The Train.RED FYER NIRS
device (Train.Red, Elst, Netherlands) was affixed to the
vastus lateralis muscle to assess SmO,. This familiarization
session aimed to minimize learning effects in subsequent
trials and ensure participants could perform at maximal
effort without interference from unfamiliar equipment.

Due to equipment constraints, six of the 11 participants
completed their trials on a Cybex 751T treadmill, and the
remaining five used a Woodway ELG treadmill. Although
both models are widely used in exercise testing, minor
differences in belt speed calibration, shock absorption,
and surface characteristics may introduce variability.

2.2.2. Day 2: Maximum Sprint Speed Testing

The second session focused on testing for MSS on the
Jack Rose synthetic track at California State University,
Long Beach. Participants completed a standardized warm-
up routine, which included five minutes of low-intensity
jogging, dynamic stretching, and strides. Each participant
then performed three 50-meter sprints on a flat synthetic
track, with at least three minutes of passive recovery
between attempts to mitigate fatigue. A 50 m all-out sprint
was used to capture maximal sprint speed, as this distance
reliably elicits near-maximum velocity in athletic
populations [25]. Sprint velocity was measured using a
Brower TCI Timing System, with laser timing gates
positioned at 40 meters and 50 meters to capture peak
speed. The highest recorded velocity across the three
trials was designated as the participant’s MSS.

2.2.3. Day 3: Max Aerobic Speed Testing

The final session consisted of an incremental treadmill
test designed to assess MAS, SmO,, and [La]bmax. Before
testing, participants were fitted with a Polar H10 heart
rate monitor, a COSMED face mask connected to a
metabolic analyzer (COSMED, Rome, Italy), and the NIRS
optode secured to the vastus lateralis muscle with
adhesive patches and an elastic bandage. Baseline SmO,
values were then recorded while participants remained
seated for five minutes, providing a resting reference
point [25].

Participants then completed a standardized ten-minute
warm-up, beginning with five minutes of running at 14
km/h, followed by dynamic stretching. The treadmill test
protocol commenced at 14 km/h, increasing by 1 km/h
every minute until 19 km/h. Beyond this point, increments
decreased to 0.5 km/h per minute until 21 km/h, and then
to 0.2 km/h per minute until voluntary exhaustion [12].
SmO, was continuously monitored to assess oxygen

extraction and utilization in working muscle tissue.

Post-exercise blood lactate concentration in millimoles
per liter (mmol/L) was measured to assess anaerobic
energy system engagement. Blood samples were collected
from the earlobe at one, three, five, and seven minutes
following the treadmill test using a Lactate Scout 2
analyzer (EKF Diagnostics) [12, 26]. The highest value
recorded during this period was designated as [La]bmax,
representing peak lactate accumulation in response to
exercise. The timing of lactate sampling was intended to
ensure that peak concentrations were captured within the
expected post-exercise window [26]. Although post-
exercise blood lactate was sampled at multiple time
points, actual individual peak values may occur outside
this window [22]. This methodological limitation should be
considered when interpreting [La]bmax.
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Fig. (1). SmO, phases during incremental treadmill testing.

2.3. SRR

SRR was used to classify athletes based on their
aerobic and anaerobic physiological attributes. It was
calculated as the ratio of MSS to MAS, determined using
the formula [10]:

SRR = MS5/MAS

MSS was obtained from the fastest 50-meter sprint
trial recorded with laser timing gates. MAS was identified
as the velocity at VO,max (vVO,max) during the treadmill
test, based on breath-by-breath metabolic gas exchange
analysis. The lowest treadmill speed at which VO,max was
maintained was designated as vVO,max, following
established methodology [6].

2.4. NIRS and SMO, Metrics

SmO, was continuously monitored using a Train.RED
FYER NIRS device placed over the vastus lateralis. This
non-invasive optical method calculates relative changes in
total hemoglobin (tHb) by detecting the interplay between
oxygenated and deoxygenated hemoglobin, using
wavelengths at 760 nm (deoxyhemoglobin) and 850 nm
(oxyhemoglobin). SmO, data were recorded at 10 Hz,
consistent with the sampling rates reported in validation
studies of wearable NIRS devices. Calibration was
automatically done through the Train.RED app
automatically during a one-minute initialization phase, as
recommended by the manufacturer. Prior research has
validated the reliability of the Train.RED FYER system for
tracking hemoglobin saturation changes in sports science
contexts [27]. To examine the muscle’s oxygenation
response during the incremental treadmill test, SmO, data
were divided into four distinct phases (Fig. 1):

10.0 125 15.0 17.5

Time (min)

(1) Baseline - A five-minute seated rest period before
the warm-up, establishing the individual’s resting SmO,

[25].

(2) Test - The entire duration of the treadmill protocol
from onset to volitional exhaustion.

(3) End-of-Test - The final 30 seconds before the
subject terminated the test, representing peak
physiological strain [28].

(4) Recovery - The first minute immediately following
exercise cessation, capturing initial reoxygenation
patterns.

From these phases, four key SmO,-derived metrics
were calculated. ASmO, quantifies the magnitude of
deoxygenation after an exercise bout by expressing the
percent difference between baseline and End-of-Test SmO,
values; calculated as the percent between these two

Baseline SmiZ~-End of Test Smiz
values [16, 29]: “¥m9z= e

Baseline Smil2
MdO, slope reflects the rate of SmO, decline at exercise
onset and was obtained by fitting a segmented regression
to the Test phase and extracting the linear slope up to the
second major inflection point in the SmO,-time curve,
isolating the primary deoxygenation phase before plateau
(Fig. 2). Several studies have shown that muscle
deoxygenation often exhibits more than one breakpoint,
reflecting different stages of oxygen extraction and
metabolic demand during incremental exercise. By
focusing on the interval between the start of exercise and
this second inflection, we capture the linear portion of
deoxygenation that best represents the upper limit of
oxygen extraction before a subsequent plateau or slower
rate of change [17, 30, 31]. For the IP metric, we chose
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the first major breakpoint in the SmO, curve, identified via
the same segmented regression analysis used for the
MdO, slope (Fig. 3). The inflection marks the transition
from predominantly aerobic to increasing anaerobic
metabolism and corresponds closely with systemic lactate

thresholds (VT1/LT1), indicating when oxygen supply
begins to lag behind demand [18]. Finally, the ROHS is
defined as the linear rate of SmO, increase during the
Recovery phase, with steeper slopes reflecting faster
muscle reoxygenation driven by local perfusion and
mitochondrial function (Fig. 4) [19].
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Fig. (2). MdO, slope segmented regression analysis.
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ROHS: Linear Trend in Recovery Phase
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Fig. (4). Determination of ROHS post-maximal exercise.

2.5. Data Analysis

Statistical analyses were carried out in SPSS 26 (IBM,
Armonk, USA) and R Studio 4.2.1 (R Core Team, Vienna,
Austria). Variables were described using means + SD,
medians, ranges, and kurtosis, and distribution normality
was assessed using the Shapiro-Wilk test. To explore
relationships among SmO, metrics, [LaJbmax, and SRR,
Pearson correlation coefficients were calculated and 95%
confidence intervals were reported for each estimate. The
alpha level was set a priori at <0.05. Data trends and the
strength of linear associations were visualized with
scatterplots and segmented-regression charts. SmO,
kinetics were examined by identifying key inflection points
and computing deoxygenation and reoxygenation slopes.
All procedures adhered to standard practices in sports
science research. All figures were generated using Python
(Matplotlib library).

3. RESULTS

3.1. Descriptive Statistics
A total of 11 NCAA Division I middle-distance runners

Table 1. Descriptive statistics of performance metrics.

16.4

16.6 16.8 17.0 17.2

Time (min)

participated in this study. The average age of participants
was 20.36 + 1.57 years, with an average height of 178.12
+ 7.08 cm, and an average weight of 65.51 + 6.62 kg. The
body fat percentage averaged 7.56 = 1.78%, and the
average weekly mileage reported was 48.18 + 18.34
miles. Table 1 presents the descriptive statistics of key
performance and physiological variables (MSS, MAS, SRR,
VO2mazx, [Lalbmax, ASmO,, MdO,, ROHS, and IP). The
mean (£SD) VO2max was 68.09 + 4.90 ml/kg/min, and the
average SRR was 1.48 = 0.16, with values ranging from
1.34 to 1.73.

3.2. Correlation Heat Map

(Fig. 5) presents a Pearson correlation heat map
summarizing the relationships among key physiological
and performance metrics (MSS, MAS, SRR, VO2max,
[La]bmax, ASmO,, MdO,, ROHS, and IP). Notably, SRR
displayed a moderate positive correlation with ASmO, (r =
0.66, p = 0.028) and a moderate negative correlation with
ROHS (r = -0.64, p = 0.034). In contrast, [La]Jbmax did not
show a statistically significant relationship with SRR (r =
0.25, p = 0.457).

N Minimum Maximum Mean Std. Error Std. Deviation Kurtosis
MSS 11 28.20 35.30 30.60 0.62 2.04 1.68
MAS 11 18.10 21.85 20.59 0.36 1.19 0.46
SRR 11 1.34 1.73 1.48 0.05 0.16 -0.93
VO2max 11 60.23 75.60 68.09 1.48 4.90 -0.87
[La]bmax 11 6.10 19.60 11.76 1.35 4.46 -1.01
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N Minimum Maximum Mean Std. Error Std. Deviation Kurtosis
ASmO, 11 27.23 52.89 34.19 2.15 7.13 4.83
Mdo, 11 -11.84 3.10 -4.59 1.29 4.27 -0.14
ROHS 11 43.20 78.45 62.99 3.44 11.42 -0.88
P 11 6.12 8.67 7.66 0.23 0.77 0.05

Note: N = 11. MSS, maximal sprint speed (m/s); MAS, maximal aerobic speed (km/h); SRR, speed reserve ratio (MSS divided by MAS); VO,max, maximal
oxygen uptake (ml-kg™'min™"); [Lalbmax, peak blood lactate concentration (mmol/L); ASmO,, percent change in muscle oxygen saturation from baseline to end
of test; MdO,, muscle deoxygenation slope; ROHS, rate of muscle reoxygenation following exercise; IP, inflection point of SmO, curve during incremental
exercise. Notably, [Lalbmax ranged from 6.1 to 19.6 mmol-L™', whereas SRR ranged only from 1.34 to 1.73, which may have reduced the power of

correlations.

MSS
MAS  -0.41
ST 0.78% -0.82"

VO2max

[Lalpmax 0.17

ASmO2 | 0.39 B[y 0.35
MdO2 0.30 -0.47 -0.41 0.03
ROHS [-0.49 | 049 kTl 0.05

P -0.27 -0.06 0.08

Fig. (5). Pearson correlation heat map.
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Note: Warmer colors represent positive correlations and cooler colors represent negative correlations. Asterisks indicate statistical

significance (*p < 0.05, **p < 0.01).

3.3. Relationships Between SRR and Physiological
Markers

As illustrated in Fig. (6A), ASmO, demonstrated a
significant positive correlation with SRR (r = 0.66, p =
0.028). Athletes with higher SRR (i.e., relatively more
anaerobic-inclined) tended to show a larger percent
change in muscle deoxygenation, whereas lower-SRR
(more aerobic) runners exhibited smaller ASmO, values.
Fig. (6B) shows the inverse relationship between ROHS

and SRR (r = -0.64, p = 0.034). Participants with lower
SRR (suggesting stronger aerobic capacity) displayed
faster reoxygenation rates, whereas higher-SRR indivi-
duals recovered more slowly post-exercise. Fig. (6C)
shows the correlation between SRR, with the data points
widely scattered, indicating substantial inter-individual
variability. Although [Lalbmax spanned a wide range
across participants (6.1-19.6 mmol/L), no significant
correlation emerged with SRR (r = 0.25, p = 0.457).
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Fig. (6). (A-C) Correlation scatter plots.
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Note: Scatter plots showing the relationships between speed reserve ratio (SRR) and key physiological variables. Panel A displays the
correlation between SRR and percent change in muscle oxygen saturation (ASmO,); Panel B shows SRR versus the reoxygenation slope
(ROHS); and Panel C presents SRR versus peak blood lactate concentration ([LaJbmax). Each point represents an individual participant (N

= 11), and dashed lines indicate the line of best fit.

4. DISCUSSION

This study aimed to determine whether SmO,-derived
metrics and/or [La]lbmax could serve as practical, noninva-
sive alternatives to the speed reserve ratio (SRR) for
profiling the aerobic-anaerobic balance in NCAA Division I
middle-distance runners. Of the SmO, metrics examined,
only ASmO, and ROHS significantly correlated with SRR.
Contrary to our hypothesis, ASmO, correlated positively
with SRR (r = 0.656, p = 0.028), while ROHS supported
our hypothesis with a negative correlation (r = -0.644, p =
0.033). These findings reveal a complex relationship
between local oxygen utilization patterns and physiolo-
gical profiles. IP, MdO, slope, and [La]bmax did not show
significant correlations with SRR or with each other.

One of the key findings was the unanticipated positive
correlation between ASmO, and SRR. A higher SRR

indicates greater anaerobic capacity, characterized by a
high maximal sprint speed relative to aerobic capacity. In
contrast, a lower SRR reflects stronger aerobic capacity
and endurance-oriented physiology. We expected that
runners with lower SRR would exhibit larger ASmO, due
to their skeletal muscles’ enhanced ability to extract and
utilize oxygen [32-34]. Instead, runners with higher SRR
showed the greatest muscle deoxygenation during the
maximal exercise. This pattern mirrors earlier research on
sprint athletes performing 30-second Wingate tests under
simulated hypoxia [16]. A plausible explanation for this
observation involves differences in muscle fiber
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composition and capillary structure between anaerobic
and aerobic athletes. Athletes with higher anaerobic
capacity (higher SRR) typically have more fast-twitch
(Type 1I) fibers, characterized by lower capillary density
and mitochondrial content compared to slow-twitch (Type
I) fibers. During intense exercise, Type II fibers rapidly
utilize oxygen, potentially exceeding the rate at which
oxygen can be delivered to the sarcolemma through local
microvasculature. This mismatch leads to pronounced
muscle deoxygenation at the onset of exercise and may
persist under conditions of maximal exertion due to
ongoing oxygen supply-demand imbalance [27, 35]. By
contrast, endurance training stimulates angiogenesis and
enhances microvascular function in the skeletal muscle,
supporting sustained oxygen delivery and blunting the
SmO, drop during exercise [36-39]. Together, these

physiological differences suggest that ASmO, reflects

underlying muscle fiber composition and vascular
characteristics, which may help explain its positive
association with SRR by distinguishing athletes with more
anaerobic versus aerobic physiological profiles.

We observed a strong negative correlation between
ROHS and SRR (r = -0.644, p = 0.033), supporting our
initial hypothesis that athletes with lower SRR recover
muscle oxygenation more rapidly following a maximal
exercise bout. Such rapid SmO, recovery likely reflects
multiple endurance-related adaptations. As stated before,
endurance training increases both capillary and
mitochondrial density in skeletal muscle, which has been
shown to significantly improve oxygen delivery and
utilization during exercise and recovery periods [38, 39].
In addition, aerobic athletes tend to have increased
myoglobin content, which can enhance intracellular
oxygen diffusion, facilitating a faster return of SmO, level
after exercise [40]. These adaptations could underpin the
steeper ROHS slopes seen in the athletes with lower.

This study did not find any significant correlation with
[La]Jbmax SRR or any SmO, metric, indicating that this
metric alone cannot distinguish aerobic-anaerobic profiles
in middle-distance runners. Although higher lactate levels
reflect increased glycolytic activity during exercise, their
absolute value and timing of reaching peak levels are
influenced by individual factors, including buffering
capacity, blood volume shifts, and training status [13].
Additionally, variability in lactate clearance rates can
cause true peak lactate to occur outside the standard 3-
to-7-minute postexercise sampling window used in this
study [41, 42]. It is also possible that, within a
homogenous cohort of well-trained middle-distance
athletes, physiological profiles are so similar that
[La]obmax lacks the sensitivity to detect subtle
interindividual differences. While lactate testing remains a
useful tool for understanding metabolic stress during
exercise, its ability to fully profile middle-distance runners
may be limited.

In addition, IP and MdO, slope did not significantly

correlate with the SRR or the other metrics. Threshold
metrics from NIRS measurements can vary considerably

due to factors such as sensor placement, treadmill
protocol, and individual variability in metabolic
transitions, limiting their reliability [43, 44]. Minor
variations in the NIRS optode placement or changes in
treadmill grade can substantially alter detected
thresholds, highlighting the challenges of using these
metrics to accurately profile aerobic-anaerobic balance in
athletes.

Overall, these findings indicate that ASmO, and ROHS
seem to be valid alternatives to the SRR and provide
valuable insights into an athlete’s physiology. These
metrics may be incorporated into an athletic training
program in order to understand an athlete’s strengths and
weaknesses, how they respond to training, and the race
strategy that might suit them best. Systematic tracking of
these metrics across training cycles may help coaches
make adjustments in an athlete's exercise choice,
intensity, and rest intervals in order to improve race
performance while reducing the risk of overtraining.

Despite these promising insights, several limitations of
our study must be acknowledged. First, the use of two
different treadmill models (Cybex 751T and Woodway
ELG) introduced potential variability in belt calibration,
cushioning, and running surface characteristics, possibly
influencing results despite standardization efforts. Second,
our relatively small sample size (n=11) comprised only
males, which restricts the generalizability of these
findings to broader populations of middle-distance
runners. Future research should include larger and more
diverse cohorts, incorporating both male and female
athletes across varying competitive levels, to enhance
statistical power and clarify whether SmO, and [La]bmax
responses differ significantly between subgroups. Third,
high variability was found in multiple of the metrics, such
as the MdO, and IP metrics. This raises concerns about
reliability that should be considered when interpreting
these measures. Fourth, fixed lactate sampling intervals
(1-, 3-, 5-, and 7-minute post-exercise) might not have
captured the true peak lactate concentration in all athletes
due to individual differences in lactate response and
clearance rates. Future studies should consider either
continuous lactate monitoring or increasing the sampling
intervals. Fifth, the absence of direct on-track
performance data limits the practical application of the
metrics. Future research should integrate these metrics
with actual competition performance data to improve the
predictive validity. Finally, the cross-sectional design of
this study provides only a snapshot of athlete physiology
and does not assess how interventions targeting ASmO, or
ROHS affect performance over time. Prospective,
intervention-based studies that manipulate training
variables based on SmO, feedback could yield valuable
insights into optimal training strategies tailored to
individual aerobic and anaerobic profiles.

CONCLUSION

This study investigated whether SRR, SmO, metrics,
and [Lalbmax could collectively inform the
aerobic-anaerobic profiles of NCAA Division I middle-
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distance runners. Our findings indicate that SRR is a
valuable composite measure reflecting an athlete’s
balance between sprinting and endurance capacities, with
ASmO, positively correlating and ROHS negatively
correlating with SRR. These correlations highlight the
utility of portable NIRS technology for distinguishing
athletes who rely heavily on anaerobic power (higher SRR,
greater ASmO,) from those who are better adapted
aerobically (lower SRR, steeper ROHS). Conversely,
[La]lbmax alone did not significantly correlate with SRR or
other physiological metrics.

Practically, coaches can leverage SmO, metrics during
training to individualize workout intensities, optimize
recovery intervals, and monitor physiological responses.
Regular tracking of ASmO, and ROHS can assist in
identifying appropriate training interventions, detecting
early signs of fatigue, and preventing overtraining. Given
the limitations associated with the small sample size and
the absence of direct competition performance data,
future research should seek to validate these findings in
larger, more diverse athlete cohorts and explore
longitudinal relationships between NIRS-derived metrics
and actual race outcomes. Overall, this study supports
integrating noninvasive SmO, monitoring into training
programs to enhance athlete-specific training strategies
and performance outcomes in middle-distance runners.
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