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Abstract:

Obesity is a condition that is highly associated with chronic diseases. The number of obese individuals is increasing on a global scale every year.
Energy intake that is imbalanced with energy expenditure causes the accumulation of excess fat. Regular exercise is part of a lifestyle that can
reduce the  risk  of  obesity  by inducing adipose browning.  One of  the  mechanisms of  exercise  in  inducing browning is  by modifying the  gut
microbiome  profile.  This  profile  may  promote  adipose  browning  by  maintaining  the  integrity  of  the  intestinal  barrier,  glucose  homeostasis,
regulating energy absorption, and appetite-regulating hormones.
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1. INTRODUCTION

The main cause of death has shifted from communicable to
non-communicable diseases. As the prevention and treatment
of  communicable  diseases  increase,  deaths  from  non-
communicable  diseases  also  increase  [1].  A  lack  of  physical
activity  contributes  to  most  chronic  diseases,  such  as
hypertension, obesity, hyperglycemia, and hyperlipidemia [2].

An unbalanced diet, wherein the intake of calories exceeds
energy  expenditure,  expands  the  adipose  tissue  mass  due  to
adipocyte hypertrophy and adipocyte precursor hyperplasia [3,
4]. White fat accumulation is associated with negative health
effects,  including  obesity,  insulin  resistance,  as  well  as
increasing  diabetes  mellitus.  In  prolonged  conditions,  fat
accumulation  increases  the  risk  factor  for  chronic  diseases,
such as cancer and cardiovascular disease [5, 6].

One  of  the  mechanisms  that  can  increase  energy
expenditure is browning, which changes white fat into brown
or beige fat [7 - 9]. This process is induced by various factors,
one of which is exercise [10 - 13]. Exercise is part of a lifestyle
that helps to prevent various chronic conditions [14].
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The  mechanism  by  which  exercise  induces  browning  is
still being explored. Among the most interesting recent studies
is  one  on  the  role  of  gut  microbiota  in  improving  metabolic
health. The gut microbiome is of particular interest, attributable
to  its  role  in  energy  harvesting  [15].  Exercise  is  among  the
factors  that  cause  physiological  changes  in  the  body,  one  of
which  is  the  gastrointestinal  system.  The  gut  microbiome,  a
collection of more than three million microbiota genes in the
human gut, is considered to make a strong contribution to the
physiological  processes  of  the  digestive  tract.  The  gut
microbiome  can  make  a  genetic  contribution  to  the  overall
health of the human body [16 - 18].

Exercise  has  been  shown  to  affect  the  gut  microbiome
profile  by  reducing  the  ratio  of  Firmicutes  to  Bacteroidetes,
fusobacteria, proteobacteria, and increasing microbiota, which
are  important  for  body  health,  including  Bacteroidetes,
Verrucomicrobia, and Actinobacteria. Recent research has also
proven that exercise can improve metabolic health through the
role of short-chain fatty acids (SCFAs). SCFAs have various
mechanisms  of  action,  one  of  which  is  inducing  adipose
browning. This review discusses the role of exercise in adipose
browning by influencing the gut microbiome profile.
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2. ADIPOSE TISSUE AND BROWNING

Adipose  tissue  occupies  about  20-28%  of  the  total  body
mass. This composition varies and is influenced by gender or
specific  conditions,  such  as  obesity.  In  obese  individuals,
adipose tissue can account for 80% of the total body weight [19
-  21].  The function of  adipose tissue varies  depending on its
type and anatomic location.

Adipose tissue is classified into white fat tissue (WAT) and
brown fat tissue (BAT), more commonly known as “white fat”
and  “brown  fat.”  Both  have  different  characteristics  and
functions. White fat functions in energy storage in the form of
triglycerides, while brown fat plays a role in fuel oxidation and
heat production [22]. White fat is characterized by large white
adipocytes  containing  unilocular  lipid  droplets.  WAT  is
associated with endocrine organs and functions, such as insulin
sensitivity. Meanwhile, brown fat comprises multilocular lipid
droplets and mitochondria containing protein-1 (UCP1) [23].

Apart from white fat and brown fat, another type is beige
or brite adipocytes (brown-in-white).  These beige adipocytes
are  fat  cells  with  a  white  fat  phenotype,  but  stimulation  can
give  a  brown  fat  phenotype.  This  phenomenon  is  known  as
browning.  This  brown  fat  phenotype  is  associated  with  the
function  of  increasing  thermogenesis  and  preventing  fat
accumulation in the body, so it plays a natural anti-obesity role
[24 - 26]. Browning is the appearance of beige adipocytes in
white adipose tissue. This process increases thermogenic and
exercise  requirements.  Various  transcription  factors  are
involved  in  this  process,  including  the  16-containing  PR
domain (PRDM16), peroxisome proliferator-activated receptor
(PPAR), and uncoupling protein (UCP) [24, 27].

Several factors can induce the browning process, such as
cold exposure and a physiological  stimulus.  Previous studies
have  shown  that  cold  exposure  in  rodents  stimulates  BAT
signaling  and  increases  UCP1  expression  [28,  29].  Several
compounds  contained  in  food  have  been  shown  to  have  the
effect of increasing the browning process [30].  Many animal
and  human  studies  have  shown  that  exercise  can  induce
adipose  browning  [31  -  34].  How  the  exercise  mechanism
induces browning remains unclear. One of the factors that may
have a role in this process is the gut microbiome. Currently, the
gut microbiome has been widely investigated because it has a
vital role in the health of the human body, including its ability
to induce browning in adipose tissue [35 - 37].

3.  EXERCISE  CHANGING  GUT  MICROBIOME
PROFILE

Most microbiota are found in the intestine, with a density
of  up  to  1013-1014  cells/gram  of  colonic  mass  [38,  39].  Gut
microbiota have a variety of physiological functions, including
digestion,  metabolism,  and  the  regulation  of  the  immune
system  [39].  The  human  gut  microbiota  is  mostly  90%
occupied by the phyla Bacteroidetes and Firmicutes, and to a
lesser  extent,  the  phyla  Proteobacteria,  Actinobacteria,  and
Verrucomicrobia [40]. This composition can be influenced by
various  factors,  including  genetic  factors,  age,  eating  habits,
disease conditions, and physical activity (exercise).

Exercise  can  modify  the  gut  microbiome  profile.  Prior

research  has  shown  that  exercise  can  reduce  the  ratio  of
Firmicutes  to  bateroidetes.  The  risk  of  obesity  is  associated
with an increased ratio of Firmicutes to Bacteroidetes, which is
linked to increased absorption of calories from the gut [41, 42].
Exercise  can  increase  the  colony  of  bacteria  that  produce
butyrate,  which  is  beneficial  for  health  [18].

During  exercise,  various  processes  and  changes  occur  in
the body, one of which is in the digestive tract  environment.
Exercise  can  affect  the  intestinal  transit  time  and  splanchnic
blood  flow,  the  HPA  axis,  and  increase  urease-producing
bacteria  and  mitochondrial  function.  These  processes  further
affect  the  gut  microbiome  profile,  including  increasing  the
phylum  Bacteroidetes,  Verrucomicrobia,  and  Actinobacteria
[43].  This  mechanism  relies  on  the  exercise  modality  (type,
intensity, and duration) [43].

3.1. Verrucomicrobia

The  gut  microbiome  regulates  metabolic  conditions  by
several  mechanisms,  including  maintaining  intestinal  barrier
homeostasis, glucose homeostasis, and energy absorption [44].
Akkermansia  municiphila  is  a  species  that  belongs  to  the
phylum Verrucomicrobia. Akkermansia has benefits for human
health. It has the effect of increasing lipid oxidation and then
increasing  energy  expenditure.  Akkermansia  municiphila  is
also  important  in  the  metabolism  and  degradation  of  mucin,
thereby  maintaining  the  integrity  and  homeostasis  of  the
intestinal barrier [44, 45]. Yoon et al. showed an increase in the
concentration  of  GLP-1 in  high-fat  diet  (HFD) rats  given A.
municiphila. It was observed that one of the metabolic effects
of  A.  munichipila  comes  from  the  regulation  of  appetite-
regulating hormones [46]. Deppommier et al. found an increase
in  energy  expenditure  in  high-fat  diet  (HFD)  rats  given
pasteurized  A.  munichipila  [47].  In  addition,  there  was  an
increase  in  CO2  production  and  an  increase  in  VO2
consumption  with  the  administration  of  pasteurized  A.
municiphila in HFD mice [47]. This finding is supported by the
results of Deng et al.,  which showed that increased levels of
mRNA Cidea, Ppargc1a, and Prdm16, are markers of adipose
browning  in  HFD  rats  given  Akkermancia  municiphila
supplementation [37]. Various results of this study indicate the
role of A. municiphila in inducing browning.

3.2. Actinobacteria

Actinobacteria  (Bifidobacteria)  is  among  the  dominant
phylum in the adult gut microbiome. Although the proportion
is not too large compared to other phyla, Bifidobacteria have
an important role in health and obesity prevention [48]. Phylum
Actinobacteria plays a role in maintaining the intestinal barrier,
starch  degradation,  and  modulating  the  immune  response  by
regulating  regulatory  T  cells  [49].  Fat  absorption  has  been
suppressed  by  Bifidobacteria  supplementation.  Therefore,  it
has the ability to inhibit an obesity-induced high-fat diet [50,
51].  This  anti-obesity  effect  is  also  caused  by  the  role  of
hormone  GLP-1,  which  is  an  appetite-suppressant  hormone.
The  gut  microbiome  profile  can  affect  GLP-1  levels  [50].
Similar  findings  by  Cano  et  al.  found  that  Bifidobacterium
supplementation reversed increases in body weight and leptin
levels  in  HFD-induced  mice  [52].  Infants  who  lack  a
Bifidobacteria  population  have  a  higher  risk  of  obesity,
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diabetes  and  metabolic  disease  [48,  53,  54].  In  addition,  the
supplementation  of  Bifidobacteria  and  lactobacillus  can
increase pro-inflammatory cytokines, such as IL-4 and IL-10.
This pro-inflammatory cytokine increase further activates M2
and increases PGC-1α [55].

3.3. Bacteroidetes

One  component  of  SCFA,  namely  propionate,  has  been
shown to increase the production of hormones, Glucagon-like
peptide-1  (GLP-1)  and  Peptide  YY  (PYY).  Both  of  these
hormones have the effect of suppressing appetite [41, 42]. The
increase in butyrate is proportional to the relative abundance of
Prevotella  (Bacteroidetes)  and  Paraprevotella  [56].  These
Gram-negative anaerobic bacteria function in the degradation
of proteins and carbohydrates. Diet rich in fiber is thought to be
a factor that can increase the abundance of Prevotella [57, 58].
Prevotella can synthesize SCFA, which is the final product of
fermented dietary fiber of intestinal microbiota. This synthesis
process  occurs  through  the  acetyl-CoA  pathway  involving
pyruvate  as  a  substrate.  SCFA  has  an  important  role  in  the
body's metabolism. SCFA increases lipid oxidation and reduces
white  fat  accumulation  in  adipose  tissue,  but  the  specific

mechanism of SCFA in lipid metabolism is still being explored
[59]. This mechanism is probably due to SCFA increasing the
phosphorylation  of  PGC-1α  and  AMPK  to  increase  lipid
oxidation  in  tissues  [60].  PGC-1α  is  one  of  the  primary
regulators of mitochondrial biogenesis and thermogenesis. An
increase in PGC-1 and AMPK can further increase the impact
of thermogenesis by increasing Ucp1. The relationship between
exercise,  gut  microbiome  profile,  and  its  effect  on  adipose
browning, is illustrated in Fig. (1).

4.  GUT  MICROBIOME  METABOLITES  INDUCE
BROWNING

Changes in gut microbiome composition can affect energy
metabolism.  Prior  studies  have  shown  that  exercise  can
increase the production of butyrate (SCFA) by gut microbiota
[61].  Research  by  Gao  et  al.  demonstrated  the  impact  of
butyrate  in  increasing  the  expression  of  the  peroxisome
proliferator-activated  receptor-gamma  coactivator  1-alpha
(PGC-1α)  gene,  which  is  a  regulator  of  mitochondrial
browning  and  biogenesis  [62].  Butyrate  also  increases
respiratory capacity, fatty acid oxidation, and the activation of
AMPK to reduce fat mass [63, 64].

Fig. (1). Relationship between exercise, gut microbiome profile, and adipose browning. Exercise increases the microbiota phylum Verrucomicrobia,
Bacteroidetes, and Actinobacteria. This increase improves the intestinal barrier and glucose homeostasis, regulates energy and lipid absorption, and
increases Short Chain Fatty Acid (SCFA). This effect synergistically enhances a series of pathways that favor enhanced thermogenesis/adipose
browning.
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Li  et  al.  reported  an  increase  in  Ucp1  expression
accompanied  by  a  decrease  in  lipid  droplet  size  in  butyrate-
treated  HFD  mice  [65].  SCFA  can  bind  to  its  receptors  in
various body tissues, one of which is adipose tissue. Lu et al.
reported  that  the  supplementation  of  acetate,  propionate,
butyrate (Component SCFA), or a mixture thereof was shown
to increase G-protein coupled receptor 43 (GPR43) expression
in the adipose tissue of HFD-induced mice. The administration
of  this  SCFA  component  also  increased  PYY  and  GLP-1
mRNA  expression  in  the  colon  of  HFD-treated  mice  [66].
SCFA  supplementation  also  ameliorated  the  decreased
expression  of  mitochondrial  biogenesis  genes  (PGC-1a,
NRF-1, Tfam) and beiging markers (Tbx1, Tmem26, CD137)
in  HFD-induced  mice  [66].  Exercise  and/or  butyrate
supplementation  have  been  shown  to  reduce  elevated  serum

levels  of  lipopolysaccharide  (LPS)  and  pro-inflammatory
cytokines  (TNF-a and IL-1ß)  in  HFD mice.  In  HFD-induced
mice,  lipid  synthesis  protein  expression  was  significantly
increased (ACC, p-ACC-Ser79, FAS). In contrast, there was a
decrease in the expression of lipolytic proteins (CPT1, PPARa,
PPARγ)  in  the  liver  of  mice.  Interestingly,  these  conditions
could be reversed by exercise or the administration of butyrate
[18].  This  suggests  that  exercise  promotes  the  browning  of
white  adipose  tissue,  partly  by  modulating  gut  microbiome
balance  and  increasing  SCFA  production.  However,  future
studies are required to investigate the direct action of exercise
on the browning of white adipose tissue. Various studies on the
effects  of  gut  microbiome  and  its  metabolites  on  lipid
metabolism and adipose browning are summarized in Table 1.

Table 1. Study on the effects of the gut microbiome and its metabolites on lipid metabolism and adipose browning.

Year Author Method Intervention Importance
2017 Li et al. [65] In vivo Intragastric and intravenous administration

of butyrate
Group:
1). HFD
• without butyrate
• with 5% butyrate intragastric
• with butyrate IV
2). Vagotomy sub diafragmatik. One week
after surgery, given treatment:
- HFD
- HFD with 5% butyrate for 5 weeks

In Butyrate group:
• ↓food intake; ↓ Body Weight; ↓ fat mass; ↓gWAT weight;
↓liver weight; ↓hepatic lipid content;
• Plasma (↓ trigliseride; ↓fasting insulin; ↓ HOMA-IR
• Adipose (↓Lipid droplet; ↑Ucp-1 expression; ↑TH (Tyrosine
Hydroxylase))
• Gut: ↓ abundance of phylum Firmicutes relative to
Bacteroidetes

2016 Lu et al. [66] In vivo 3-4 week-old C57BL/6 J male mice
Group:
• a control high-fat diet (HFD)
• high-fat diet + acetate (HFD-A)
• high-fat diet + propionate (HFD-P)
• high-fat diet + butyrate (HFD-B)
• high-fat diet + admixture (HFD-SCFA)

• HFD+A/P/B or HFD+SCFA → suppressed weight gain
• HFD+A/P/B or HFD+SCFA→ suppressed triglycerides,
cholesterol, IL-1β, IL-6 or MCP-1
• HFD+A/P/B or HFD+SCFA → ↑ GPR43 level; ↓GLP-1 mRNA
in adipose and colon
• HFD+A or HFD+SCFA →↓leptin mRNA, ↑ adiponectin and
resistin mRNA
• HFD+P →↓PYY mRNA expression
• Cpt1c and cpt2 expressions have a positive relationship with
GPR43 in adipose.
• HFD+SCFA → ↑ PGC-1a, NRF-1, Tfam, -F1-ATPase, COX IV
and cyt-c); mtDNA levels, Tbx1, Tmem26, CD137
• HFD+A/P/B or HFD+SCFA → ↑rich bacterial phylotype in the
gut.

2009 Gao et al. [62] In vivo 4 weeks old, male C57BL/with HFD
HFD for 13 weeks

• Butyrate group:
•  ↑expenditure  on  HFD;  ↑oxygen  consumption  at  night;
↑Substrate use (assessed by RER) ; suppressed ↑BW; suppressed
↑ body fat content;
•  Plasma:  ↓  Fasting  glucose  ;  ↓Fasting  insulin;  ↓HOMA-IR;
↓Intraperitoneal insulin tolerance
• Adipose: ↑ smaller lipid droplets; ↑ PGC-1α; ↑UCP1 expression
(RT-PCR and immunoblot)

2021 Yu et al. [18] In vivo 4-weeks-old C57BL/6 male mice
Group:
• NCD (sedentary control group (NC) or
exercise training group (NE) for 8 weeks.
• HFD group:
     a) HFD control group (HC);
b) HC + oral sodium butyrate (HCB);
c) HFD + exercise training (HE);
d) HE + oral sodium butyrate g (HEB) for 8
weeks.

• HCB, HE, HEB → suppressed ↑ energy intake
• HE →↓plasma triglycerides (TG), total cholesterol (TC), FFA
levels
• HCB →↓serum TG and TC
• HE & HEB → suppressed ↑LPS & pro-inflammatory cytokines
(TNF-a & IL-1ß)
• HE → ↑ fecal butyrate; ↑ level phylum Bacteroidetes &
Firmicutes
• HE, HCB → ↑ SESN2 and CRTC2 expression
• HCB → suppressed ↑ IL-1β and TNF ɑ
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Year Author Method Intervention Importance
2019 Li et al. [67] In vivo Rats were grouped into:

• Wild type (Control) C57BL/6J 7-8 weeks
old
•  Germ-free  male  mice  (GF)  aged  11-12
weeks (given antibiotics) ABX
• Pairpad
Antibiotic treatment is started in 8-9 weeks
old animals for 3-4 weeks

ABX  group  →  ↓  thermoregulatory  effect;  ↓  mRNA  Ucp1&  ↓
Ucp1 protein (cold exposure); ↓ oxygen consumption (VO2); ↓
Eosinophils in BAT; ↓Fecal butyrate
Treatment CL316243
• ↑multilocular lipid droplets adipocytes in WAT rats SPF vs. GF
• ↑Ucp1 protein and Ucp1 mRNA
•  Mice  with  repopulation  microbiota  (RO)→  ↑Ucp1  (cold
exposure)
Treatment butyrate:
• ↑Core body temperature ABX
• ↑Ucp1 protein in BAT & WAT
• ↓food intake of control rats, but not in ABX.
• ↑ fecal butyrate.

2020 Deng et al. [37] In vivo Male C57BL/6 mice were randomly divided
into 6 groups, including:
- HFD + A.muciniphila I
- HFD + A.muciniphila II
- HFD + A.muciniphila PBS
- NCD+ A.muciniphila I
- NCD+ A.muciniphila II
- NCD+ A.muciniphila PBS

A. muciniphila group:
•  Plasma  →  ↓fasting  blood  glucose;  ↑serum  insulin;  ↓serum
levels of TG and TC
•  Liver  →  Suppressed  ↑  Liver  weight;  suppressed  lipid  drop
accumulation
•  WAT  →  (Amuc_GP01  and  Amuc_GP25)  ↓adipocyte
dimension
•  BAT  →  ↓BAT  whitening  (changed  from  multilocular  to
unilocular  adipocyte);  ↑UCP1  protein  and  mRNA  UCP1
expression;  ↑mRNA  levels  of  Cidea,  Ppargc1a,  Prdm16  and
Pparg
• ↓mRNA expression of macrophage inflammation markers

2020 Depommier  et  al.,
[47]

In vivo 14 C57BL/6J 8-weeks old male mice
Groups;
ND or an HF; daily oral intervention with
pasteurized A. muciniphila was given.

Pasteurized A. municiphila group:
• ↓weight gain; ↓ fat mass gain
• ↓Adipose depots (SAT: subcutaneous; EAT: epididymis; VAT:
visceral)
• ↑ energy expenditure; ↑CO2 production; ↑ VO2 consumption
• ↓whitening and lipid droplet size of BAT
•

2021 Yoon et al. [46] In vivo HFD-induced C57BL/6J mice
Identification  and  analysis  of  P9  protein
secreted  by  L  cells  of  HFD  mice  were
carried  out  using  spectrophotometry

Municiphila group:
• ↓body mass; ↑ glucose tolerance; ↑serum concentrations of
markers of insulin and oxidation genes.
• ↑mitochondria-specific gene encoding Ucp1
• ↑ number of anti-inflammatory M2 macrophages in iBAT
• ↑ plasma GLP-1 concentrations
• ↑ the expression of Gcg (the gene encoding GLP-1) and Pcsk.

CONCLUSION

Exercise  can  induce  adipose  browning,  possibly  by
modifying the gut microbiome profile. Exercise increases the
butyrate-producing  bacteria,  including  phylum
Verrucomicroia,  Bacteroidetes  and  Actinnobacteria.  This
increase in phyla increases the gut barrier, maintains glucose
homeostasis, modulates the immune system, reduces intestinal
energy and lipid absorption, increases lipid oxidation, increases
GLP-1  hormone,  and  increases  an  important  gut  microbiota
metabolite, namely, SCFA. Finally, we conclude that the set of
mechanisms synergistically enhances the pathways that induce
adipose browning.

FUTURE PERSPECTIVE

Studies on the effects of exercise on the gut microbiota and
its  metabolites  and  on  adipose  browning  are  still  not  widely
available.  Therefore,  we  plan  to  further  explore  the  primary
effect  of  exercise  on  the  gut  microbiome  and  adipose
browning.
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