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Abstract:

Background:

Traditional  exercise  prescription  is  based  on  the  assumption  that  exercise  adaptation  is  predictable  and  standardised  across
individuals.  However,  evidence  has  emerged  in  the  past  two  decades  demonstrating  that  large  inter-individual  variation  exists
regarding the magnitude and direction of adaption following exercise.

Objective:

The aim of this paper was to discuss the key factors influencing this personalized response to exercise in a narrative review format.

Findings:

Genetic  variation  contributes  significantly  to  the  personalized  training  response,  with  specific  polymorphisms  associated  with
differences  in  exercise  adaptation.  These  polymorphisms  exist  in  a  number  of  pathways  controlling  exercise  adaptation.
Environmental factors such as nutrition, psycho-emotional response, individual history and training programme design also modify
the inter-individual adaptation following training. Within the emerging field of epigenetics, DNA methylation, histone modifications
and non-coding RNA allow environmental  and lifestyle  factors  to  impact  genetic  expression.  These epigenetic  mechanisms are
themselves modified by genetic and non-genetic factors, illustrating the complex interplay between variables in determining the
adaptive response. Given that genetic factors are such a fundamental modulator of the inter-individual response to exercise, genetic
testing  may  provide  a  useful  and  affordable  addition  to  those  looking  to  maximise  exercise  adaption,  including  elite  athletes.
However, there are ethical issues regarding the use of genetic tests, and further work is needed to provide evidence based guidelines
for their use.

Conclusion:

There is considerable inter-individual variation in the adaptive response to exercise. Genetic assessments may provide an additional
layer of information allowing personalization of training programmes to an individual’s unique biology.

Keywords: Inter-individual, Exercise, Adaptation, Genetics, Epigenetics, Psycho-emotional, Personalized.

1. INTRODUCTION

Conventional exercise prescription is comprised of blanket advice. For example, the American College of Sports
Medicine  (ACSM)  recommend  >150  minutes  of  moderate-intensity  and  >75  minutes  of  vigorous-intensity
cardiovascular  exercise  per  week,  along  with  resistance  training  twice  per  week  with  repetition  ranges  of  8-12  for
novices and 1-12 for intermediates [1, 2].  Within  this  advice  is  the  implicit  assumption  that  humans  respond  in  a
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predictable  nature  to  known  exercise  inputs.  Given  these  recommendations,  you  might  think  that  an  individual’s
adaptive response to an exercise intervention is a predictable, standardised phenomenon tightly distributed around an
averaged group mean. Yet, in recent decades, studies designed to examine the individual adaptive response to exercise
have  illustrated  large  inter-individual  variations,  in  both  the  magnitude  and  direction  of  the  resulting  response,
exceeding far beyond both the expected day-to-day biological perturbations [3. 4], and our conventional perspectives [5,
6].

Historically,  training  theory  has  been  founded  on  the  implicit,  and  previously  unexamined,  assumption  that
adaptation to training is both standardised and predictable across individuals. Such assumptions form the conceptual
bedrock of periodisation theory and exercise prescription literature within sports coaching, public health and medical
domains [1, 2, 7 - 9]. The literature guiding these recommendations typically report group norms which obscure the
individual  variation  that  occurs  between  subjects.  However,  over  the  course  of  the  past  two  decades,  evidence
demonstrating  the  unexpectedly  extensive  inter-individual  variation  in  response  to  similar  training  stimuli  has
accumulated exponentially [5, 6, 10 - 12]. The illustration of such wide-ranging variations in response conflicts with the
traditional exercise prescription assumptions, questioning many of the traditional components of physical preparation.

Resolving the conceptual deficit between current evidence and conventional theory requires an understanding of the
influences driving inter-individual response. These influences emanate from diverse academic domains, and the focus
of this article is to identify those that interact to customise the inter-individual adaptive response. Furthermore, whilst
past reviews have highlighted some of these influences [6], we add findings from the emerging field of epigenetics.
Finally, we outline how these influences integrate, and suggest how an enhanced understanding of the broad range of
factors influencing adaptive response can help contextualise the limits, and potential value of, emerging gene profiling
technologies.

2. INTER-INDIVIDUAL VARIATION IN RESPONSE TO TRAINING

It is well established that, when subjected to the same stimulus, there is a wide variety in response within subjects.
Large variations in muscle size (from -2% to +59%), changes in one-repetition maximum (1RM; 0% to +250%) and
changes  in  maximum  voluntary  contraction  (MVC;  -32%  to  +149%)  have  been  reported  following  12-weeks  of
resistance  training  [10].  The  same  is  true  for  aerobic  capacity  improvements,  with  the  HERITAGE  (HEalth,  RIsk
factors,  exercise  Training  And GEnetics)  family  study finding a  mean improvement  in  VO2max  of  384 mL O2  min-1

following 20-weeks’ training. However, some subjects saw no improvement, whilst a small number of subjects saw
much larger  improvements  than the average,  as  high as  1100 mL O2  min-1  -  almost  four  times the mean [5].  Other
studies have reported large variations in response to high-intensity interval training [11], fat loss [13, 14], other health-
related aspects including insulin sensitivity, blood pressure, and cholesterol levels [5], and response to ergogenic aids
[15].

The individual response to exercise appears to be modality specific. Karavirta et al. [16] randomised 175 subjects
into  four  groups;  endurance  training  only,  strength  training  only,  concurrent  strength  and  endurance  training,  and
controls. All groups exhibited a large range in exercise response, with improvements in VO2peak ranging from -10 to
+60% in the endurance trained group, and MVC improvements ranging from -15 to +60% in the strength trained group.
But it is the strength and endurance trained group where the crucial data lies; although some subjects saw a negative
training response in either VO2peak or MVC, no subject had a negative response in both. Additionally, no subject was in
the highest quintile of improvement for both VO2peak and MVC. Hautala et al. [17] found that when individuals were
given both an endurance and resistance training block, improvements in VO2max differed between modalities. Perhaps
most promising was that those seeing the lowest VO2max improvement following endurance training saw a greater
VO2max improvement following resistance training. This indicates there aren’t global responders and non-responders to
exercise,  merely  responders  and  non-responders  to  specific  exercise  types.  There  are  thousands  of  biochemical
adaptations to exercise, and a multitude of different training modalities, making it unlikely that there are individuals
who  see  no  improvement  at  all  following  exercise  [18].  This  is  not  necessarily  a  consensus,  however,  with  others
finding that, whilst the inter-correlation in non-response to exercise between exercise modalities is low, it is not zero
[19].  Exercise  adaptation  occurs  through several  separate  pathways  specific  to  each  training  modality.  The  lack  of
global non-responders suggests the driver of individual variation in exercise response could be down to variation within
these pathways. This variation would likely occur due to genetic and non-genetic influences, which combine to create a
unique adaptive outcome.
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Outside of specific performance-enhancing adaptations following exercise, there is also a large range in terms of
health improvements. Returning to HERITAGE, the mean improvement in insulin sensitivity within a sub-cohort was
10%  [5].  However,  this  varied  between  subjects  from  large  improvements,  to  no  change,  to  a  decrease  in  insulin
sensitivity. Factors affecting this individual response included gender, race, and starting body weight [20]. Similarly,
disease state can also modify improvements in insulin sensitivity following exercise training, with type-II diabetics and
non-diabetics seeing improvements of differing magnitudes [21].

Even very complex traits, comprised of many factors, show large ranges in variability between subjects. Injury risk
in sport is multifactorial, comprised of internal and external risk factors, along with an inciting event [22]. Even within
this complex model, not all high-risk athletes will get injured, nor will low-risk athletes avoid injury [23]. The same is
true  when  looking  at  response  to  a  dietary  supplement,  such  as  vitamin  D,  with  genotype,  baseline  serum  25-
hydroxyvitain  D  (25(OH)D)  levels  and  body  mass  index  (BMI)  all  modifying  increases  in  serum  25(OH)D  levels
following supplementation [24]. A large individual variation in the ergogenic effect of caffeine has also been widely
reported [15, 25, 26].

3. POTENTIAL MECHANISMS DRIVING THE INDIVIDUAL RESPONSE

Given  that  these  large  variations  in  exercise  adaptation  exist  between  subjects,  it  is  necessary  to  identify  and
understand the causes of this variation. Here, we outline how proposed mechanisms interact to lead to the observed
extensive inter-individual variation in exercise adaptation.

3.1. Genetics

Following  the  completion  of  the  Human  Genome  Project  in  2003,  genetic  analysis  has  become  increasingly
affordable, making research into the effects of genes on fitness and performance more feasible. Knowledge of these
genetic influences has progressed significantly in recent years, moving from the idea that all traits are determined by a
single gene (which holds true in select disease states such as Cystic Fibrosis [27] and Huntington’s disease [28]), to
more complex polygenic interactions. The “single gene as a magic bullet” philosophy has previously been present in
sport [29], with some coaches believing that individual genes are responsible for athletic performance. However, no
single gene has been discovered. Instead, we are faced with the reality that elite athletes possess many favourable alleles
[30, 31] with no athlete possessing the perfect genetic profile for elite performance [32].

All traits, therefore, exist on a spectrum; from single gene traits at one end to complex polygenic traits at the other.
Whilst  it  might  be  thought  that  complex  traits  can  never  be  fully  understood  regarding  their  genetic  component,
research has identified candidate genes associated with highly complex traits  such as intelligence [33],  educational
attainment [34], height [35], and chances of being an elite athlete [36]. Of course, these traits are also dependent on
non-genetic  factors,  but  there  is  an  inherent  genetic  component  within  them.  Returning  to  exercise  adaptation,  the
heritable component differs from trait to trait. For example, the results of HERITAGE indicate approximately 50% of
heterogeneity in VO2max improvement following training is determined by heritable factors [37], whilst muscle fibre type
is  45% to  99.5% heritable  [38,  39],  and  52% of  muscle  strength  phenotype  is  heritable  [40].  Knowledge  of  genes
affecting this response may allow for manipulation of training factors such as volume, intensity, frequency and rest-
periods  to  improve  exercise  response.  Indeed,  recent  research  has  argued  whether  true  non-responders  to  specific
exercise modalities exist, with increases in exercise intensity and frequency eliminating exercise non-response [41 - 43].

3.1.1. Gene Polymorphisms & Exercise Adaptation

At least 120 genetic markers are linked to elite athlete status [44], with approximately 10% of these replicated in at
least three studies; yet more genes are implicated with exercise adaptation [45]. Elite athletes are a good start point in
the search for candidate genes driving exercise response, as they represent a highly specialised cohort. For example,
elite sprinters are likely very good at sprinting because they possess genotypes predisposing favourable adaptations
following speed-power training. One such gene is ACTN3, which encodes for alpha-actinin-3, a protein that forms part
of the Z-line in muscle fibres. A single nucleotide polymorphism (SNP) within ACTN3, known as R577X, arises from a
C → T substitution, resulting in a premature stop codon (X) in place of arginine (R). Approximately 18% of individuals
are homozygous for the X allele, causing a deficiency of alpha-actinin-3 [46]. Whilst this isn’t associated with any
disease state, it does mean that XX genotypes tend to have a lower percentage of type-IIx muscle fibres [47]. The X
allele  is  uncommon  in  elite  speed-power  athletes,  and  potentially  more  common  in  elite  endurance  athletes  when
compared to controls [48]. This indicates the XX genotype is unfavourable for elite power performance, but potentially
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has a beneficial effect on endurance performance. Subsequent research has confirmed the association between the R
allele and power performance, although the link between the X allele and endurance is less clear [49]. Other replicated
SNPs found to  affect  athletic  performance  include  ACE  I/D [50  -  52],  PPARGC1A  Gly482Ser  [53  -  55],  GABPB1
(rs7181866) [56, 57], BDKRB2 +9/-9 [58, 59], and HIF1A Pro582Ser [60, 61].

After identifying a relevant polymorphism, the next step is to elucidate how this polymorphism affects individual
training  response.  With  ACTN3,  RR  genotypes  show  greater  improvements  in  peak  power  and  strength  than  XX
genotypes following resistance training in elderly populations [62, 63]. The mechanisms driving these differences are
not fully understood. Increases in mTOR and p70S6k, stimulators of skeletal muscle hypertrophy, have been found to
be greater in R allele carriers than XX genotypes following high-intensity exercise [64], and testosterone levels may be
higher  in  RR genotypes  [65].  R  allele  carriers  also  tend  to  have  a  higher  percentage  of  type-II  muscle  fibres  [66],
potentially allowing greater hypertrophy following resistance training [67, 68]. These findings may go some way to
explaining the differences in training responsiveness between ACTN3 genotypes. Again, similar research has shown a
modifying effect of other polymorphisms on training response, including ACE I/D [69 - 71] and PPARGC1A Gly482Ser
[72  -  74],  as  well  as  the  influence  of  genetic  variation  on  other  traits,  including  injury  risk  [75  -  77]  and  exercise
recovery [78, 79].

3.2. Environmental Factors

If  heritable  factors  are  responsible  for  a  part  of  exercise  adaptation,  the  obvious  question  to  ask  is  -  what  is
responsible for the other part? These non-genetic factors are often termed “environmental”, which we will define as
non-genetic factors. Within this review we will divide them into four groups; individual history, programme design,
psycho-emotional factors, and nutrition. These non-genetic factors can be both acute, affecting a single or small number
of consecutive sessions, or chronic, affecting response to the training programme as a whole.

3.2.1. Individual History

A  phenotype  is  the  observable  expression  of  an  individual’s  genotype,  which  is  impacted  by  that  person’s
environment [80]. Within this paper, we can consider individuals to have either a highly-, normal-, or under-adaptive
phenotype, influenced by their genotype (see Gene polymorphisms and exercise adaptation), but also environmental
variables. One such variable is baseline fitness, which impacts recovery from exercise [81 - 83]. Another is previous
training  history,  with  trained  individuals  showing  differences  in  adaptive  mechanisms  post-exercise  compared  to
beginners [84], and subject age [85]. When looking at dietary interventions, diet history can modify responsiveness to
interventions,  with previous weight loss attempts potentially making future weight loss harder [86].  Finally,  higher
habitual physical activity can enhance the response to endurance training [87]. Within HERITAGE, correlates of VO2max

improvements following training included baseline VO2max, age, gender, weight, ethnicity, and achievement of target
workload [88]. Baseline phenotypes appear to influence separate traits to differently, comprising a smaller portion of
VO2max improvements following exercise (11-16%) and a larger portion of blood pressure response following exercise
(21-47%) [6].

3.2.2. Programme Design

Training programme design (exercise selection, frequency, duration, intensity, recovery times, repetition and set
ranges, etc.) can also influence the magnitude of adaptation to training [67, 68, 89 - 93], as can time of day [94.95], such
that two people with an identical genotype doing different training programmes would see a difference in phenotype.
Indeed,  increasing  total  exercise  volume,  frequency  and  intensity  reduces,  and  perhaps  eliminates,  exercise  non-
response, suggesting that environmental influences can perhaps over-ride the genetic pre-disposition to exercise non-
response [41 - 43, 96].

3.2.3. Psycho-Emotional Factors

In recent years, attention has turned to how the brain influences exercise performance and adaptation. Initially, this
focused on fatigue,  with both the Central  Governor [97] and psychobiological [98] models proposed to explain the
relationship between brain and fatigue. Following this, interest has built around understanding the relationship between
brain and physiology, especially regarding exercise adaptation. Previous work has indicated that response to a stressor -
including exercise, feelings of fatigue, and pain – is filtered through the brain’s emotional centres, which evaluate the
stressor in terms of its threat [99]. Current perceptions suggest that biological adaptation, to an imposed or perceived
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stressor, is not regulated by the magnitude of that stressor, but by the nature of the stress response launched to remediate
the challenge presented to the neuro-biological system [101]. The nature and magnitude of the stress response is hence
governed primarily by the emotional resonance afforded the perceived threat presented by the stress-inducing event.
This  emotional  interpretation  subsequently  initiates  a  neuro-chemical  response,  proportional  in  magnitude  to  the
perceived threat presented by the stressor. This neurochemical response, in turn, launches the cascade of downstream
bio-chemical responses which subsequently drive all peripheral adaptations [99 - 102]. From this, we can see that the
magnitude of response to a stressor is not solely dependent on the stressor itself, but the emotional resonance attached to
this stressor; this emotional response drives the bio-chemical and hormonal alterations, in turn driving all subsequent
physiological and peripheral tissue adaptations.

This  emotional  response is  complex,  and is  best  summarised by Ganzel  et  al.  [100] In their  model,  the authors
describe  the  factors  that  mediate  the  emotional  response,  including  prior  context,  such  as  previous  traumatic
experiences, evolved coping behaviours, and health. This prior context interacts with the current state of the organism,
both  in  terms  of  emotional  state  (influencing  prior  mental  health,  which  influences  acute  emotional  response  to  a
stressor) and, via the chemical changes that  drive subsequent physical  responses,  physical  changes that  accompany
chronic stress, such as increased cortisol (which influences prior physical health, itself a modifier to the acute response
to  a  stressor).  These  factors  combine  to  influence  the  weighting  the  emotional  system places  on  an  acute  stressor,
affecting the acute physical response.

By combining the work in this field, we can summarise that every stressor, including exercise, exerts a neurological,
biological, psychological and emotional load depending on individual interpretation [99, 100, 103]. This means that
what often feels solely like a physical response, such as fatigue, is mediated by perception, suggesting the psychological
and biological responses to a stressor are irrevocably mutually entwined.

3.2.3.1. Factors Affecting Psycho-Emotional Response

The response to a stressor is altered by both environmental and genetic factors. These include lack of sleep, which
impacts exercise recovery [104, 105], promoting the release of stress hormones [106]. This potentially leads to a loss of
aerobic [107] and strength [108] ability, and increases the inflammatory response [109], altering training performance
and hence adaptation. Sleep restriction, both acute and chronic, can alter the perception of a stressor [110], modifying
the psycho-emotional response [111].

Stress  interpretation  is  modified  by  heritable  factors,  including  polymorphisms  in  genes  such  as  COMT  [112],
BDNF [113, 114], and 5HTTLPR [113] that impact the stress response, altering exercise adaptation and performance
[115,  116].  The microbiome, which is  influenced by both environmental  and genetic factors,  also affects  the stress
response in athletes [117]. Finally, epigenetic modifications (see Epigenetics) impact stress interpretation pathways
[118], explaining how childhood trauma influences adult stress behaviours [119].

The individual stress response also impacts the adaptive mechanisms following exercise. Psycho-emotional stress
influences exercise adaptation by decreasing immunity and recovery [120], and increasing the risk of injury [121]. In
addition,  baseline  stress  has  been  correlated  with  VO2max  improvements  [122].  Given  that  the  stress  response  is
partially hormone led [123], and these hormonal changes can be fast-acting [124], the stress state of the subject at the
time of exercise can modify the adaptive response both acutely and chronically [125]. As an example, subjects with
lower stress scores show greater increases in both bench press and squat strength compared to subjects with higher
stress scores [126]. Similarly, an athlete who has just argued with a spouse and has long-term financial worries is less
likely to mount an optimal adaptive response than a content athlete [99].

The acute psycho-emotional response to exercise can cause variation in work-rate within that session, contributing
to the inter-individual variation in exercise response [88]. Within-session work-rate is comprised of various factors,
including residual fatigue, but also via psychological factors that impact within-session work via the psychobiological
model [98]. Individual variation in perception of work-rate can lead to changes in exercise performance [127], and this
perception of work rate is influenced by a myriad of factors [97]. Perception of effort also has a heritable component,
which explains 35% of the variance in rating of perceived exertion (RPE) between subjects [128].

Finally,  the  placebo  effect,  expected  outcomes,  and  previously-held  beliefs  alter  the  emotional  evaluation  of  a
stressor,  modifying  training  performance  and  adaptation.  An  ever-increasing  body  of  literature  illustrates  that  a
subject’s prior beliefs alter performance, including belief that they have taken caffeine [129], sodium bicarbonate [130],
and doping agents [131 - 133]. Returning briefly to sleep, “placebo sleep” can improve cognitive function [134], again
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illustrating the power of belief. Given that expected beliefs can alter effort within a training session, whether a subject
believes exercise is positive can affect the outcome of exercise- and nutritional-intervention trials [135, 136]. Emerging
research seems to suggest that certain genotypes are more sensitive to expectancy, placebo and nocebo effects [137],
again illustrating the consistent underlying influence of genetics on environmental factors.

3.2.4. Nutrition

An additional factor that influences exercise adaptation is nutrition. Macronutrient intake impacts both exercise
performance and adaptation [138 - 140]. The same is true for micronutrients; for example, serum vitamin D levels are
associated with muscle power and force, both acutely [141] and in response to a training programme [142]. Recently,
attention has focused on individual variation within the gut microbiota, which impacts post-exercise recovery and mood
states, altering adaptation [117, 143]. Finally, long-term high dose antioxidant use may blunt the adaptive response to
exercise  [144,  145],  leading  to  the  possibility  that  differences  in  dietary  composition  could  contribute  to  the  inter-
individual variation in exercise response. Other nutritional factors modifying the acute physiological stress expected
following training include short-term macronutrient intake [146], antioxidant intake [147, 148], and use of medications
such as non-steroidal anti-inflammatory drugs (NSAIDS) [149 - 151].

These nutritional factors are influenced by genetic variation. The microbiota, for example, is influenced by host
genetics [152]. Returning to the vitamin D example, polymorphisms in genes, including VDR, influence muscle strength
[153],  which  in  turn  influences  training  response.  VDR  can  also  alter  vitamin  D  requirements  [154].  Vitamin  D
supplementation may also enhances improvements to a strength training programme [142], which begs the question - do
non-responders to strength training not respond because of genetic factors, or is their response blunted due to vitamin D
insufficiency (which in turn can be influenced by SNPs)? Given that nutrition impacts gene signaling post-exercise
[155, 156], it’s easy to see how both genes and environment combine and interact to create the phenotype.

Finally, the use of ergogenic aids alters the performance level within individual training sessions, in turn affecting
the long-term adaptation that accumulates over time. One such aid is caffeine, which has a clear, replicated ergogenic
effect on exercise performance [157 - 159], the effects of which are modified by genetic variation [26, 160]. Another is
creatine, which can affect intra-session recovery, allowing for a greater workload to be completed [161].

3.3. Summarising Gene-Environment Interactions

Having discussed the different genetic and environmental aspects that affect exercise response, it  is worthwhile
summarising  these  within  a  model.  Fig.  (1)  shows  the  typical  gene-environment  model,  where  both  genetic  and
environmental  factors  interact  in  an  additive  manner  to  determine  the  post-adaptation  phenotype.  As  a  simplified
example,  two individuals  who are homozygous for  the R allele of  ACTN3  will  have different  phenotypes based on
environmental factors. If subject A undertakes high-load resistance training, they will likely see good levels of muscle
hypertrophy.  If  subject  B  is  sedentary,  then  they  won’t  see  hypertrophy,  no  matter  how  favourable  their  personal
genotype.

Fig. (1). The Gene-Environment Model, with gene and environment interacting to create phenotype. In this example, ACTN3 is used
to create a simplified overview.
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However,  as  explored in  environmental  factors,  there  are  a  variety of  environmental  factors  that  affect  training
response.  These  have  a  complex  relationship  with  genetic  factors;  they  can  affect  genetic  expression,  but  are  also
affected themselves by SNPs within specific genes. This allows us to create a more complex model, as per Fig. (2),
which illustrates the increasing complexity.

Fig. (2). A more complex model illustrating the two-way relationship between various environmental and genetic factors to create
the outcome, in this case exercise adaptation. Further complexity could be added to this model by showing the inter-relationship
between the environmental factors; nutrition can affect psychological factors, for example.

3.4. Epigenetics

Having introduced genetics and environment, two aspects that we typically think combine to create the phenotype,
we turn our attention to epigenetics. Epigenetics refers to changes in gene function that occur without a change in the
nucleotide  sequence  [162].  These  changes  can  be  heritable,  but  also  changeable  over  the  course  of  time  within  an
individual [163], influenced by both genetic and non-genetic factors. The three main epigenetic mechanisms are DNA
methylation, histone modifications, and non-coding mRNA, and all act as a way for our environment, through factors
discussed previously, to impact genetic expression.

3.4.1. DNA Methylation

The most extensively studied epigenetic mechanism, DNA methylation occurs through the addition of a methyl
group to a cytosine base [164], making that section less accessible for translation [165]. This can be positive or negative
depending on whether expression of that gene is desired; methylation of oncogenes and obesity-risk genes is likely
positive, whilst methylation of tumor suppressor genes, and those driving exercise adaption is less ideal [166, 167]. The
same stimulus  can both  increase  and decrease  in  methylation in  different  genes  [168].  For  example,  six-months  of
aerobic exercise lead to decreases in methylation (hypomethylation) of muscle genes, promoting adaptation [167], and
increases  in  methylation  (hypermethylation)  in  adipose  tissue  genes,  potentially  stimulating  weight  loss  [169].
Similarly, PPARGC1A, a gene influencing mitochondrial biogenesis [170], exhibited increased methylation following
nine-days of bed rest, and decreased methylation after four-weeks of re-training [171].

DNA methylation is modifiable within an individual; the methylation profiles of obese patients become more like
lean subjects’ following a weight-loss intervention, for example [172]. The levels of methylation in response to the
same stimulus may also change over time, with higher levels seen in elderly subjects’ post-exercise, possibly due to
accumulation of aberrant methylation in these subjects that needs correcting with exercise [173]. Of the three epigenetic
modifications detailed here, methylation is the most stable [164], with early life experiences – even those pre-birth –
having a long-term effect on gene expression [174]. Methylation patterns can even be passed down generations, raising
the possibility that methylation markers affecting elite athlete status and fitness may be partially inherited [168].
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3.4.2. Histone Modification

Our DNA is coiled around histone proteins, giving it a specific shape. The epigenetic variation caused by histone
modification  occur  via  acetylation  of  this  structural  histone  protein,  changing  its  shape.  This  makes  the  DNA
comparatively easier to read, increasing the expression of these genes [175]. Histone acetylation is controlled by histone
acetyl-transferases (HAT), whilst histone deacetylases (HDAC) removes the acetyl group, reducing translation at that
point  [176].  In  mice,  the  presence  of  a  specific  HDAC  (HDAC5)  can  reduce  the  adaptations  expected  following
exercise [177], illustrating how histone modifications might affect exercise response. In humans, HDAC5 levels are
lower following training, confirming that these proteins play a role in exercise adaptation, although at present the causes
of individual differences in HDAC5 levels are not clear [175]. Histone modifications are constantly in a state of flux,
making them the most transient of the epigenetic changes [164].

3.4.3. Non-Coding RNA

RNA is typically used by the body as messenger RNA (mRNA), passing information from DNA to the ribosomes,
where  protein  synthesis  occurs.  However,  most  RNA  within  the  body  is  non-coding;  instead,  it  regulates  genetic
expression or catalyses chemical reactions [178, 179, 180]. Within epigenetics, of interest is micro RNA (miRNA),
molecules which exert control over mRNA, either by inhibiting translation or causing degradation before translation
occurs [181]. This indicates miRNA could regulate gene transcription post-exercise, affecting adaptation. In subjects
matched for diet, training history, age and body mass, a 12-week resistance training programme elicited adaptations of
differing  magnitude,  partially  mediated  by  specific  miRNAs;  levels  of  these  miRNA  were  correlated  with  greater
adaptations,  including  increases  in  strength  [180].  miRNA  has  also  been  reported  to  influence  aerobic  exercise
adaptation [180 - 183]. It’s not clear at present what factors affect circulating levels of miRNA, making it difficult to
harness this knowledge at present.

At this point, we can update our model to include the impact of epigenetics on gene-environment interactions, as
seen in Fig. (3).

Fig. (3). A simple model of gene-environment interactions, with the addition of epigenetics. In this model, environmental factors
have been grouped together for simplicity. Here, these environmental changes alter genetic expression, although as we will see in the
following sections, this is a complex relationship.

3.4.4. Genetic Influences on Epigenetic Modifications

So far, we’ve covered how epigenetic mechanisms allow for the environment to impact genetic expression, which is
typically  how  epigenetics  is  viewed.  However,  genetic  variation  can  also  affect  the  efficiency  of  epigenetic
modifications, bringing things full circle. This is most well established in terms of methylation, where several genes
[184], including MTHFR [185], affect DNA methylation, in turn affecting epigenetic modifications post-exercise. Elite
athletes have a greater  number of  polymorphisms across several  genes that  affect  methylation status,  resulting in a
genetic  predisposition  to  hypomethylate,  and  this  lack  of  methylation  potentially  increases  post-exercise  muscle
hypertrophy by increasing specific gene transcription [186, 187].

3.4.5. Environmental Influences on Epigenetic Modifications

Along with genetics, environmental influences such as nutrition can alter epigenetic modifications. For example, a
high calorie diet appears to increase methylation of genes controlling metabolism, making metabolic dysfunction more
likely [188]. As discussed, genes influence the efficiency of methylation, but also interact with environmental factors to
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control these changes, adding an extra layer of complexity. As an illustration, MTHFR  encodes for an enzyme that
coverts the folate derivate 5,10-methylenetetrahydrofolate (5,10MTHF) to 5-methylterahydrofolate (5MTHF), creating
s-adenosylmethionine (SAM) – the agent for DNA methylation. Simply put, this pathway starts with folate, which is
converted to intermediaries by MTHFR, with the availability of these intermediaries affecting methylation efficiency
[189,  190].  The  two  common  MTHFR  SNPs,  C677T  and  A1298C,  influence  the  activity  of  the  MTHFR  enzyme.
Focusing on C677T, T allele carriers typically have poorer conversion of folate, which influences methylation. When
placed on a low folate diet (≈115μg/d) for seven weeks, subjects show a decrease in methylation. This effect is greater
in TT genotypes, and was reversed after seven-week high folate diet (≈400μg/d) [190].

Exercise is another environmental influence that impacts epigenetic changes through alterations in gene silencing
and expression [191]. The homeostatic stress caused by exercise drives epigenetic modifications [192], which in turn
can lead to exercise adaptations by increasing translation and transcription of proteins involved in adaptive mechanisms,
including AMPK and PGC-1a [193].

Environmental influences on epigenetic modification can play a big role in determining an individual’s phenotype;
in individuals with the same genotype (monozygotic twins), differences in environment lead to different epigenetic
changes [194], altering type-II diabetes risk, for example [195]. Alongside nutrition and exercise, other environmental
factors that influence epigenetic modifications include psychological trauma [196, 197], which can be passed down
generations [198], but also reversed [199]. Environmental toxins such as tobacco smoke, dietary polyphenols, alcohol
and shift work all also impact epigenetic regulation [200].

Having reviewed the impact of both genetics and environmental factors on epigenetic modifications, we can add
these factors into a final model, discussed in section 4.

4. A FINAL MODEL TO EXPLAIN THE CAUSES OF INTER-INDIVIDUAL VARIATION

As detailed earlier, genetics can clearly impact the magnitude of adaptation to exercise, both in single SNP/gene
(e.g.  ACTN3)  and  gene-combination  (e.g.  HERITAGE)  models.  Previously,  we  examined  non-genetic  aspects
influencing this response, including nutritional status and training history. As an example, vitamin D status can impact
performance gains [142], and vitamin D status itself is modified by sunlight exposure and supplementation [142], but
also  gene polymorphisms [24,  154].  The same is  true  for  a  number  of  other  nutrients;  polymorphisms within  HFE
[201], a gene that impacts iron status alongside dietary iron intake [202, 203], may also impact improvements in aerobic
fitness following training [204]. It is clear, therefore, that genetic and non-genetic factors are linked. The same is true
for acute environmental factors, such as a stressor, which we suggested might affect response to a single exercise bout.
These acute factors are also influenced by genetic factors, such as a SNP in COMT,  that modulates stress response
[205]. They are also influenced by environmental factors such as previous trauma [206].

Having  then  introduced  epigenetics,  the  mechanism  through  which  environmental  aspects  influence  genetic
expression;  we  explored  how  genetic  and  non-genetic  factors  also  influenced  epigenetic  modifications,  further
illustrating the complex relationship between all factors, requiring an update to the model proposed in Fig. (3). This
culminates in a model illustrating how these factors interact, creating a unique outcome for each individual in response
to a stimulus. This response is not stable, as the component factors themselves can be highly variable over time; just
because  an  individual  saw  a  performance  improvement  after  one  training  programme  doesn’t  guarantee  the  same
improvement following the same programme once more [207]. Fig. (4) illustrates this complex relationship.

5. HARNESSING THIS KNOWLEDGE TO IMPROVE PERFORMANCE

Having discussed the main aspects that affect individual adaptation to exercise, it’s crucial to make this information
usable to athletes. Competing at the highest level is a function of talent alongside optimal training – but how does an
athlete know their training is optimal? Typically, this requires trial and error, which is costly in terms of both time, and,
if the trial is ineffective, performance. Given that athletes only have a window of a few years to compete at their peak,
time spent undertaking sub-optimal training can be damaging. Having more information on which to base decisions
regarding training methodology would be very attractive to everyone involved in sport. Currently, most tests carried out
on athletes are phenotypic, such as VO2max and vitamin D tests. This testing has use, providing a snapshot of where the
athlete is at a point in time and informing training requirements, but has minimal long-term predictive ability.



200   The Open Sports Sciences Journal, 2017, Volume 10 Pickering and Kiely

Fig. (4). The complex interaction between genes, environment and epigenetics on response to a stimulus, in this case a training
programme. Environmental factors are contained within the bordered circle.

Given that a large proportion of inter-individual variation is down to genetic factors, testing for these factors holds
promise.  This  could  be  single  gene/SNP  testing,  or,  more  promisingly,  larger  scale  testing  such  as  whole  genome
sequencing. The cost of these tests has dropped in recent years, increasing accessibility [208]. This gives rise to the
potential use of genetic tests to inform training programme design, which may have predictive ability [183, 209, 210].
Whilst  single  gene  models  might  give  some  insight  into  exercise  response  [62,  211],  adaptation  to  exercise  is  not
determined by a single gene. Instead, groups of genes influence the various cellular pathways controlling adaptation
[212]. By examining just one gene, such as ACTN3, we run the risk of ignoring the effects of these other genes. One
way to overcome this is to use a multi-gene model, comprised of an algorithmic approach that allows for the evaluation
of many gene polymorphisms.

One method used in this regard is the Total Genotype Score (TGS). This method has been used against retrospective
data to improve identification of at-risk individuals for cardiovascular disease and type-II diabetes [213, 214]. Within
the sports world, it has thus far been examined primarily as a potential tool for the discovery of elite athletes [30, 31,
215]  although  the  consensus  is  that  there  is  currently  no  predictive  ability  of  genetics  in  the  identification  of  elite
athletes [216]. Pooled data from three independent aerobic training programmes – HERITAGE, DREW and STRRIDE
– showed that  those with a  TGS of  ≥19 had VO2max  improvements  2.7 times greater  than those with a  score of  ≤9,
although this was conducted post-hoc and not used to inform programme design [217]. Presently, the use of a TGS or
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other algorithm has not been widely utilised in regards to interventions to improve exercise response. One study used a
TGS to retrospectively explain training response over the career of an athlete [218]. Another used a weighted algorithm
to  personalise  an  eight-week  resistance  training  programme,  with  those  doing  genetically  matched  training
demonstrating significantly greater improvements across tests of power and endurance than those doing genetically
mismatched training. In addition, over 80% of subjects identified as high responders were from the matched group,
whilst 82% of non-responders were from the mismatched group [209]. This suggests genetic testing might reduce non-
response to exercise; something that will excite elite athletes, but which may also have public health connotations in the
fight against obesity. Another method combined the use of RNA profiling with SNPs to create a molecular predictor of
VO2max response to aerobic training [183], although this has yet to be satisfactory replicated [88]. It is still early in this
journey, with a far greater body of research required; nevertheless, it does appear that we are getting closer to being able
to  utilise  this  knowledge.  Doing  so  will  also  require  manipulation  of  training  variables,  such  as  exercise  intensity,
duration, volume, as well as nutritional interventions. It must be remembered that the use of genetic information can
better inform these manipulations, but does not replace them.

Genetic testing is somewhat controversial [216, 219, 220], with the controversy comprised of various factors. One
of these is the use of genetic testing for talent; certainly, there is no evidence that genetic testing can or should be used
in  this  way  [216].  The  second  is  whether  they  have  utility  in  terms  of  exercise  modification.  A  recent  consensus
statement suggests they don’t [216], although no evidence is given within the statement to support this standpoint. It’s
certainly true that, at present, only a small number of studies have looked at training modifications based on genetic
information, but this number is expected to grow in the future, leading to the possibility that genetic information might
have some use alongside other more traditional information sources [221, 222]. Finally, there are ethical aspects to
consider and overcome. Should there be a minimum age for genetic tests? Can the results of a genetic test be placed in
the correct context for an athlete? Who owns the genetic data, the athlete or the team? If an athlete refuses a genetic test,
will they be discriminated against? What happens if a genetic test unearths a potential medical issue, such as increased
Alzheimer’s disease risk? These questions, and others, will  need to be answered before genetic testing can become
widespread in sport. Finally, there needs to be assurances that genetic test results won’t be used for selection purposes,
or any other discriminatory practices. If these ethical hurdles can be overcome, there is the potential to use genetic
testing in exercise prescription and modification alongside other more traditional aspects.

CONCLUSIONS AND FUTURE DIRECTIONS

Throughout the course of this review, we have explored some of the factors that modify the individual response to a
stimulus, primarily exercise adaptation. We’ve seen how our environment can impact adaptation, through aspects such
as  sleep  and  nutrition,  and  we’ve  also  examined  how  epigenetic  modifications  allow  communication  between  the
environment and genetic expression. However, a constant theme throughout has been the influence of genetics on the
response to a stimulus. Differences in genotype are responsible for a large amount of variation in exercise adaptation,
but genetic factors also influence environmental aspects such as nutrition and epigenetic efficiency. Given that genetic
factors are such a consistent and fundamental modulator of how someone responds to exercise, knowledge these factors
within an individual would prove useful. For the first time, this knowledge is affordable and available through genetic
testing, allowing athletes and coaches to have an idea of how they will respond, and to modify training to account for
this. The information gained from a genetic test represents an additional piece of information to inform needs much like
a vitamin D screen, heart rate variability for recovery, or a 1RM strength test. It is still early in the use of genetic testing
for  sports  people,  and  a  significant  body  of  research  is  required  to  identify  yet  more  SNPs  involved  in  exercise
adaptation,  along  with  other  areas  of  interest  to  athletes;  injury  risk,  recovery  speed,  and  the  ergogenic  effects  of
nutritional aids. However, research is starting to indicate the utility of these tests. Indeed, some sports teams have been
using genetic information [223], but without any evidence-based practice. Given the apparent desire of high level sports
people to utilize genetic information to inform programme design, the development of evidence-based guidelines is
paramount, which of course means that further research on the potential use of genetic information in training response
in required, particularly from a predictive standpoint. As such, further research should focus on:

Replication of existing, and discovery of further SNPs that impact exercise adaptation.
Examining the interplay between genes, environment, and epigenetic modifications on exercise adaptation.
The  development  of  evidence-based  guidelines  on  the  use  of  genetic  assessments  in  sport,  with  particular
reference to ethical considerations.
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The ability  to  harness  this  information potentially  represents  a  new dawn in  understanding exercise  adaptation,
allowing athletes to better their quest to become faster, higher, and stronger.
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